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Abstract. We develop an EM algorithm for estimating parameters that determine the dynam-
ics of a discrete time Markov chain evolving through a certain measurable state space. As a
key tool for the construction of the EM method we develop forward-reverse representations
for Markov chains conditioned on a certain terminal state. These representations may be con-
sidered as an extension of the earlier work [1] on conditional diffusions. We present several
experiments and consider the convergence of the new EM algorithm.

1. Introduction

The EM algorithm going back to the seminal paper [5] is a very general method for iterative
computation of maximum likelihood estimates in the setting of incomplete data. The algorithm
consists of an expectation step (E-step) followed by a maximization step (M-step) which led to
the name EM algorithm. Due to its general applicability and relative simplicity it has nowadays
found its way into a great number of applications. These include maximum likelihood estimates
of hidden Markov models in [8], of non-linear time series models in [3] and full information item
factor models in [10] to give just a very limited selection.

Despite the simplicity of the basic idea of the algorithm its implementation in more complex
models can be rather challenging. The global maximization of the likelihood in the M-step
has recently been addressed successfully (see e.g. [9] and [7]). On the other hand, when
the expectation of the complete likelihood is not known in closed form only partial solutions
have been given yet. One approach developed in [17] uses Monte Carlo approximations of
the unknown expectation and was therefore named Monte Carlo EM (MCEM) algorithm. As
an alternative procedure the stochastic approximation EM algorithm was suggested in [6].

In this paper we take a completely different route by using a forward-reverse algorithm (cf.
[1]) to approximate the conditional expectation of the complete data likelihood. In this respect
we extend the idea from [1] to a Markov chain setting, which is considered an interesting
contribution on its own. Indeed, Markov chains are more general in a sense since any diffusion
monitored at discrete times yields canonically a Markov chain, but not every chain can be
embedded (straightforwardly) into some continuous time diffusion the other way around.

The central issue is the identification of a parametric Markov chain model (Xn, n = 0, 1, . . .)
based on data, i.e. realizations of the model, given on a typically course grid of time points,
let us say n1, n2, . . . nN . Let us assume that the chain runs through Rd and that the transition
densities pθn,m(x, y), n ≥ m, of the chain exist (with pθn,n(x, y) := δx(y)), where the unknown pa-
rameter θ has to be determined. Then the standard method of maximum likelihood estimation
would suggest to evaluate

(1.1) arg max
θ

N−1∑
i=0

ln pθni,ni+1
(Xni , Xni+1) with Xn0 = x0 being the initial state of the chain.

The problem with this approach is that usually only the one-step transition densities pθn,n+1(x, y)
are explicitly known, while any multi-step density pθn,m(x, y) for m > n can be expressed as an
m−n−1 fold integral of one-step densities. In particular for larger m−n, these multiple integrals
are numerically intractable however. We therefore consider the alternative problem

(1.2) arg max
θ

N−1∑
i=0

ni+1−1∑
j=ni

E ln pθj, j+1(X j, X j+1),

in terms of the “missing data” Xni+1, ..., Xni+1−1, i = 0, ...,N − 1. As such, between two such
consecutive time points, ni and ni+1 say, the chain may be considered as a bridge process
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starting in realization Xni and ending up in realization Xni+1 (under the unknown parameter
θ though), and so each term in (1.2) may be considered as an expected functional of the
“bridged” Markov chain starting at time ni in (data point) Xni , conditional on reaching (data
point) Xni+1 at time ni+1. We will therefore develop firstly an algorithm for estimating the terms
in (1.2) for a given parameter θ. This algorithm will be of forward-reverse type in the spirit of
the one in [1] developed for diffusion bridges. It should be noted here that in the last years the
problem of simulating diffusion bridges has attracted much attention. Without pretending to
be complete, see for example, [2, 4, 13, 15, 16, 14]. Having the forward-reverse algorithm at
hand, we may construct an approximate solution to (1.2) in a sequential way by the so called
EM algorithm: Once a generic approximation θ̂(m) is constructed after m steps, one estimates

θ̂(m+1) := arg max
θ

N−1∑
i=0

ni+1−1∑
j=ni

Ê ln pθj, j+1(Xθ̂(m)

j , Xθ̂(m)

j+1),

where Xθ̂(m)
denotes the Markov bridge process under the transition law due to parameter θ̂(m)

and each term
Ê ln pθj, j+1(Xθ̂(m)

j , Xθ̂(m)

j+1)

represents a forward-reverse estimation of

E ln pθj, j+1(Xθ̂(m)

j , Xθ̂(m)

j+1)

as a (known) function of θ.

The structure of the paper is as follows. In Section 2 we recapitulate and adapt for our pur-
poses the concept of reversed Markov chains, initially developed in [12] using the ideas in
[11] on reversed diffusions. A general stochastic representation for expected functionals of
conditional Markov chains is constructed in Section 3. This representation allows for a forward
reverse EM simulation algorithm that is introduced and analyzed in Section 4. The section
is concluded with finite sample study on simulated data from a practically relevant Ornstein-
Uhlenbeck example.

2. Recap of forward and reverse representations for Markov chains

Consider a discrete-time Markov process (Xn,Fn), n = 0, 1, 2, ..., on a probability space (Ω,F ,
P) with phase space (S ,S), henceforth called Markov chain. In general we assume that S is
locally compact and that S is the Borel σ-algebra on S . For example, S = Rd or a proper
subset of Rd. Let Pn, n ≥ 0, denote the one-step transition probabilities defined by

(2.1) Pn(x, B) := P(Xn+1 ∈ B | Xn = x), n = 0, 1, 2, ..., x ∈ S , B ∈ S.

In the case of an autonomous Markov chain all the one-step transition probabilities coincide
and are equal to P := P0 = P1 = · · ·.

Let Xn,x
m , m ≥ n, be a trajectory of the Markov chain which is at step n in the point x, i.e.,

Xn,x
n = x. The multi-step transition probabilities Pn,m are then defined by

Pn,m(x, B) := P(Xn,x
m ∈ B), x ∈ S , B ∈ S, m ≥ n.

Due to these definitions, Pn,n(x, B) = δx(B) = 1B(x) (Dirac measure), Pn = Pn,n+1, and the
Chapman - Kolmogorov equation has the following form:

(2.2) Pn,m(x, B) =

∫
Pn,k(x, dy)Pk,m(y, B), x ∈ S , B ∈ S, n ≤ k ≤ m.
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Let us fix N > 0 and consider for 0 ≤ n ≤ N the function

(2.3) un(x) :=
∫

Pn,N(x, dy) f (y) = E f (Xn,x
N ),

where f is S-measurable and such that the mathematical expectation in (2.3) exists; for ex-
ample, f is bounded. By the Markov property we have for 0 ≤ n < N :

un(x) = E f (Xn,x
N ) = E f (X

n+1,Xn,x
n+1

N )

= E EFn+1 f (X
n+1,Xn,x

n+1
N ) = E EXn,x

n+1 f (X
n+1,Xn,x

n+1
N )

= E un+1(Xn,x
n+1) =

∫
un+1(y)Pn(x, dy).

Thus, un(x) satisfies the following discrete integral Cauchy problem

un(x) =

∫
un+1(y)Pn(x, dy), n < N,(2.4)

uN(x) = f (x),(2.5)

and (2.3) is a forward probabilistic representation of its solution. In fact, the probabilistic rep-
resentation (2.3) can be used for simulating the solution of (2.4)-(2.5) by Monte Carlo. For our
purpose, reverse probabilistic representations we need a somewhat more general version of
the above result.

Theorem 2.1. Let Pn be the one-step transition density of a Markov chain X as in (2.1) and
let the function f : S → R be measurable and bounded. Let further ϕn : S × S → R be a
measurable and bounded functions for n = 0, 1, 2, ... Then, the solution of the problem

wn(x) =

∫
wn+1(z)ϕn(x, z)Pn(x, dz), n < N,(2.6)

wN(x) = f (x)(2.7)

has the following probabilistic representation:

(2.8) wn(x) = E
[
f (Xn,x

N )Xn,x,1
N

]
,

where (X,X) is an extended Markov chain in which X is governed by the equations

X
n,x,γ
k+1 = X

n,x,γ
k ϕk(Xn,x

k , Xn,x
k+1), X

n,x,γ
n = γ,

where n ≤ k < N.

Proof. Note that Xn,x,γ
k = γXn,x,1

k . Thus, for n < N, (2.8) may be written as

wn(x) = E
[

f (X
n+1,Xn,x

n+1
N )X

n+1,Xn,x
n+1,X

n,x,1
n+1

N

]
= E Xn,x,1

n+1 E
(Xn,x

n+1,X
n,x,1
n+1 )

[
f (X

n+1,Xn,x
n+1

N )X
n+1,Xn,x

n+1,1
N

]
= E

[
X

n,x,1
n+1 wn+1(Xn,x

n+1)
]

= E
[
ϕn(x, Xn,x

n+1)wn+1(Xn,x
n+1)

]
=

∫
wn+1(z)ϕn(x, z)Pn(x, dz),

and (2.7) is trivially fulfilled for n = N. �
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2.1. Reverse probabilistic representations. We henceforth take (S ,S) =
(
Rd,B(Rd)

)
and

assume that the transition probabilities Pn,m(x, dy) have densities pn,m(x, y) with respect to the
Lebesgue measure on (S ,S). We note however that without any problem one may consider
more general state spaces equipped with some reference measure, and transition probabilities
absolutely continuous to with respect to it. The representation (2.3) can thus be written in the
form

(2.9) I( f ) := E f (Xn,x
N ) =

∫
pn,N(x, y) f (y)dy, 0 ≤ n ≤ N.

Let the initial value ξ of the chain X at moment n be random with density g(x). Consider the
functional

(2.10) I(g, f ) =

∫ ∫
g(x)pn,N(x, y) f (y)dxdy = E f (Xn,ξ

N ).

Formally, by taking for g a δ-function we obtain (2.9) again, and by taking f to be a δ-function
we obtain the integral

(2.11) J(g) :=
∫

g(x)pn,N(x, y)dx.

We now propose suitable (reverse) probabilistic representations for J(g), where g is an arbi-
trary test function (not necessarily a density). For this we are going to construct a class of
reverse Markov chains that allow for a probabilistic representation for the solution of (2.11).

Let us fix a number N ∈ N and consider for 0 ≤ m < N, functions ψm : S × S → R+ such that
for each m and y the function

(2.12) qm(y, ·) :=
pN−m−1(·, y)
ψm(y, ·)

, 0 ≤ m < N,

is a density on S . For example, one could take ψm independent of the second argument, and
then obviously

(2.13) ψm(y) =

∫
pN−m−1(z, y)dz.

We now introduce a “reverse” processes (Yy
m,Y

y
m)0≤m≤N by the system

P(Yy
m+1 ∈ dz′

∣∣∣ Yy
m = z) = qm(z, z′)dz′,

Y
y
m+1 = Y

y
mψm(Yy

m,Y
y
m+1),(2.14)

Yy
0 := Y0,y

0 := y, Yy
0 := Y0,y,1

0 := 1, 0 ≤ m < N,

hence Yy is governed by the one-step transition probabilities Qm(z, dz′) := qm(z, z′)dz′ (i.e. Qm
instead of Pm).

Theorem 2.2. For any n, 0 ≤ n ≤ N, (2.11) has the following probabilistic representation.∫
g(x)pn,N(x, y)dx = E

[
g(Yy

N−n)Yy
N−n

]
,

where g is an arbitrary test function (a ”density” pm,m has to be interpreted as a Dirac distribu-
tion or δ-function).

Proof. From the Chapman - Kolmogorov equation (2.2) we obtain straightforwardly the Chapman-
Kolmogorov equation for densities,

(2.15) pn,m(x, y) =

∫
pn,k(x, z)pk,m(z, y)dz, x, y ∈ S , n ≤ k ≤ m.
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Let us now fix n, n < N (for n = N the statement is trivial) also, and introduce the functions

(2.16) vk(y) :=
∫

g(x)pn,k(x, y)dx, n ≤ k ≤ N.

From (2.15) we get

vk(y) =

∫
vk−1(z)pk−1(z, y)dz, n < k ≤ N,(2.17)

vn(y) = g(y),

where pk−1 := pk−1,k denote the one-step densities. For n < k ≤ N we now consider a
“reversed” time variable m = N + n − k and write with ṽm(y) := vN+n−m(y) and (2.12) system
(2.17) in the form

ṽm(y) =

∫
ṽm+1(z)ψm−n(y, z)qm−n(y, z)dz, n ≤ m < N,(2.18)

ṽN(y) = g(y).

Let us write (2.18) in a slightly different form,

ṽm(y) =

∫
ṽm+1(z)ψ(n)

m (y, z)q(n)
m (y, z)dz, n ≤ m < N,

ṽN(y) = g(y)

with ψ(n)
m := ψm−n and q(n)

m := qm−n. Via Theorem 2.1 we next obtain a probabilistic represen-
tation of the form (2.8) for the solution of problem (2.18), hence (2.11) or J(g). Indeed, by
taking in Theorem 2.1 instead of X a Markov chain

(
Y (n),y

m

)
n≤m≤N

, where Y (n),y is governed by

the one-step transition probabilities Q(n)
m (z, dz′) := q(n)

m (z, z′)dz′, n ≤ m < N, with initial condition
Y (n),y

n = y, and constructing
(
Y

(n),y
m

)
n≤m≤N

according to

(2.19) Y
(n),y
m+1 = Y

(n),y
m ψ(n)

m (Y (n),y
m ,Y (n),y

m+1 ), Y
(n),y
n = 1, n ≤ m < N,

it follows by Theorem 2.1 that

(2.20) J(g) = ṽn(y) = vN(y) = E
[
g(Y (n),y

N )Y(n),y
N

]
.

It remains to see that

E
[
g(Y (n),y

N )Y(n),y
N

]
= E

[
g(Yy

N−n)Yy
N−n

]
which follows from the fact that initial values and the one step transition probabilities of the
processes (

Y (n),y
n+i ,Y

(n),y
n+i

)
i=0,...,N−n

and
(
Yy

i ,Y
y
i

)
i=0,...,N−n

coincide. �

It should be stressed that, in contrast to a corresponding theorem in [12], Theorem 2.2 pro-
vides a family of probabilistic representations indexed by n = 1, . . . ,N, that involves only one
common reverse process Yy. In Theorem 2.2 N was fixed but, when different N are in play, we
will denote them by Yy;N . It turns out that this extension of the related result in [12] is crucial
for deriving probabilistic representations for conditional Markov chains below (cf. [1]).
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3. Simulation of conditional diffusions via forward-reverse representations

In this section we describe for a Markov Chain (2.1) an efficient procedure for estimating the
final distributions of a chain X = (Xn)n=0,...,N conditioned, or pinned, on a terminal state XN .
More specifically, for some given (unconditional) diffusion process X we aim at simulation of
the functional

(3.1) E
[
g(Xm1 , . . . , Xmr )

∣∣∣ XN ∈ A, X0 = x
]
,

where 0 ≤ m1 < m2 < · · · < mr < N (hence r < N), A is some set that may consist of only
one point, and g is an arbitrarily given suitable test function, and x ∈ Rd is a given state. The
procedure proposed below is in fact a discrete-time version of the method developed in [1] for
continuous-time processes given by an Ito SDE. Thus, let us consider the problem (3.1) for
fixed x, y ∈ Rd (i.e. A = {y}). We firstly state the following central theorem.

Theorem 3.1. Given a grid Dl := {0 ≤ n∗ < n1 < · · · < nl =: N}, it holds that

E
[
f (Yy;nl

nl−n0
,Yy;nl

nl−n1
, . . . ,Yy;nl

nl−nl−1
)Yy;nl

nl−n0

]
=

∫
Rd×L

f (y0, y1, . . . , yl−1)
l∏

i=1

pni−1,ni(yi−1, yi)dyi−1

with yl := y and n0 := n∗.

Proof. Without loss of generality, we assume in this proof that the grid satisfies ni − ni−1 = 1,
i = 1, . . . , l. Indeed, extend f : Rd×l → R to a function f̃ : Rd×(N−n∗) → R such that

f̃
(
Yy;N

N−n∗ ,Y
y;N
N−n∗−1, . . . ,Y

y;N
2 ,Yy;N

1

)
= f

(
Yy;N

nl−n0
,Yy;N

nl−n1
, . . . ,Yy;N

nl−nl−1

)
.

Then, re-expressing the transition densities pni−1,ni in terms of the one-step transition densities
pi using Chapman-Kolmogorov, we see that the statement of the theorem is equivalent to

(3.2) E
[
f̃
(
Yy;N

N−n∗ ,Y
y;N
N−n∗−1, . . . ,Y

y;N
1

)
Y

y;N
N−n∗

]
=

∫
Rd×(N−n∗)

f̃ (yn∗ , . . . , yN−1)
N∏

i=n∗+1

pi−1(yi−1, yi)dyi−1

with yN ≡ y. In fact, we shall prove that

(3.3) E
[
fp

(
Yy;N

p , . . . ,Yy;N
1

)
Y

y;N
p

]
= ∫

fp(yN−p, . . . , yN−1)
N∏

i=N−p+1

pi−1(yi−1, yi)dyi−1

for any 1 ≤ p ≤ N − n∗ for any (e.g., bounded measurable) function fp : Rd×p → R. (3.3) gives
the formula from the statement of the theorem for p = N − n∗ with fN−n∗ being the function f̃
from above. We prove (3.3) by induction on p. For p = 1, this boils down to Theorem 2.2 with
n = N − 1.

For the step from p − 1 to p, we note that by definition

Y
y;N
p = Y

y;N
p−1ψp−1

(
Yy;N

p−1,Y
y;N
p

)
,

with ψp−1(y, ·)qp−1(y, ·) = pN−(p−1)−1(·, y) = pN−p(·, y) by (2.12). Hence, we have

E
[
fp(Yy;N

p ,Yy;N
p−1, . . . ,Y

y;N
1 )Yy;N

p

]
= E

[
fp(Yy;N

p ,Yy;N
p−1, . . . ,Y

y;N
1 )Yy;N

p−1ψp−1(Yy;N
p−1,Y

y;N
p )

]
= E

[
g
(
Yy;N

p−1, . . . ,Y
y;N
1

)
Y

y;N
p−1

]
,
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with

g(zp−1, . . . , z1) ≡ E
[

fp
(
Yy;N

p ,Yy;N
p−1, . . . ,Y

y;N
1

)
ψp−1(Yy;N

p−1,Y
y;N
p )

∣∣∣∣ Yy;N
p−1 = zp−1, . . . ,Y

y;N
1 = z1

]
=

∫
fp(z, zp−1, . . . , z1)pN−p(z, zp−1)dz.

Applying the induction hypothesis for fp−1 = g, we obtain

E
[
fp(Yy;N

p ,Yy;N
p−1, . . . ,Y

y;N
1 )Yy;N

p

]
= E

[
g
(
Yy;N

p−1, . . . ,Y
y;N
1

)
Y

y;N
p−1

]
=

∫
g(yN−p+1, . . . , yN−1)

N∏
i=N−p+2

pi−1(yi−1, yi)dyi−1

=

∫
fp(yN−p, . . . , yN−1)

N∏
i=N−p+1

pi−1(yi−1, yi)dyi−1.

�

Following the lines of [1], we now consider an extended integer sequence

0 < m1 < · · · < mk = n∗ = n0 < n1 < · · · < nl = N,

and a kernel Kε of the form

Kε(u) := ε−dK(u/ε), y ∈ Rd,

with K being integrable on Rd and
∫
Rd K(u)du = 1. Formally Kε converges to the delta function

δ0 on Rd (in distribution sense) as ε ↓ 0. We then have the following stochastic representation
for (3.1) with ni = mk+i, i = 0, ..., l = r − k + 1.

Theorem 3.2. Let the chain (Y,Y) :=
(
Yy;N ,Yy;N

)
be given by (2.14), and the modified integer

sequence
(̂
n·
)

be defined by

(3.4) n̂i := nl − nl−i, i = 1, . . . , l.

It then holds

E
[
g(Xm1 , . . . , Xmr )

∣∣∣ Xm0 = x, XN = y
]

= E
[
g(Xm1 , . . . , Xmk−1 , X

0,x
n∗ , Xn1 , . . . , Xnl−1)

∣∣∣ Xm0 = x, XN = y
]

= lim
ε→0

E
[
g
(
Xm0,x

m1 , . . . , Xm0,x
mk−1 , X

m0,x
n∗ ,Yy;N

n̂l−1
, . . . ,Yy;N

n̂1

)
Kε

(
Yy;N

n̂l
− Xm0,x

n∗
)
Y

y;N
n̂l

]
E

[
Kε

(
Yy;N

n̂l
− Xm0,x

n∗
)
Y

y;N
n̂l

] .(3.5)

Proof. The proof is completely analogue to the corresponding one in [1]. As a rough sketch,
apply Theorem 3.1 to

f (X0,x
m1
, . . . , X0,x

n∗ , y0, y1, . . . , yl−1) := g(X0,x
m1
, . . . , X0,x

n∗ , y1, . . . , yl−1)Kε(y0 − X0,x
n∗ ),

conditional on X0,x
m1 , . . . , X

0,x
n∗ , send ε → 0, and divide the result by

p0,N(x, y) = lim
ε→0
E

[
Kε

(
Yn̂l − Xn∗

)
Yn̂l

]
..

�
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3.0.1. Forward-Reverse estimator. Given Theorem 3.2 the corresponding forward-reverse Monte
Carlo estimator for (3.5) suggests itself: Sample i.i.d. copies X0,x,(1), ..., X0,x,(M) of the pro-
cess X0,x and, independently, i.i.d. copies

(
Yy;N,(1),Yy;N,(M̃)

)
, ...,

(
Yy;N,(1),Yy;N,(M̃)

)
of the pro-

cess
(
Yy;N ,Yy;N

)
. Take for K a second order kernel, take for simplicity M = M̃, and choose a

bandwith εM ∼ M−1/d if d ≤ 4, or εM ∼ M−2/(4+d) if d ≥ 4. By next replacing the expectations
in the numerator and denominator of (3.5) by their respective Monte Carlo estimates involving
double sums, one ends up with an estimator with Root-Mean-Square error O(M−1/2) in the
case d ≤ 4 and O(M−4/(4+d)) in the case d > 4 (cf. [1] for details).

4. Implementation of the forward-reverse-EM algorithm

Before presenting two concrete numerical examples, we will first discuss general aspects of
the implementation of the forward-reverse EM algorithm. For this purpose, let us, for simplicity,
assume that the Markov chains X and (Y,Y) are time-homogeneous, i.e., that p ≡ pk and
q ≡ qk do not depend on time k. We assume that we observe the Markov process X at times
0 = i0 < · · · < ir = N, i.e., our data consist of the values Xik = xik , k = 0, . . . , r. For later use,
we introduce the shortcut-notation x := (xi j)

r
j=0.

The law of X depends on an s-dimensional parameter θ ∈ Rs, which we are trying to estimate,
i.e., p = pθ. To this end, let

`(θ; x0, . . . , xN) :=
N∑

i=1

log pθ(xi−1, xi)

denote the log-likelihood function for the estimation problem assuming full observation. We
make the structural assumption that there are (explicitly given) functions gi : Rs → R and
hi : RN+1 → R, h j

i : Ri j−i j−1+1 → R such that

(4.1) `(θ; x0, . . . , xN) =

m∑
i=1

gi(θ)hi(x0, . . . , xN) =

m∑
i=1

gi(θ)
r∑

j=1

h j
i (xi j−1 , . . . , xi j).

The structural assumption (4.1) allows us to effectively evaluate the conditional expectation of
the log-likelihood `c for different parameters θ, without having to re-compute the conditional
expectations. More precisely, recall that for a given guess θ̃ the E step of the EM algorithm
consists in calculating the function

(4.2) θ 7→ Q(θ; θ̃, x) := Eθ̃
[
`c (θ; X0, . . . , XN))| Xi j = xi j , j = 0, . . . , r

]
,

with Eθ̃ denoting (conditional) expectation under the parameter θ̃. Inserting the structural as-
sumption (4.1), we immediately obtain

Q(θ; θ̃, x) =

m∑
i=1

gi(θ)Eθ̃
[
hi(X0, . . . , XN)| Xi j = xi j , j = 0, . . . , r

]
=

m∑
i=1

gi(θ)zθ̃i

with zθ̃i := Eθ̃
[
hi(X0, . . . , XN)| Xi j = xi j , j = 0, . . . , r

]
, i = 1, . . . ,m. Note that the definition of zθ̃i

does not depend on the free parameter θ. Thus, only one (expensive) round of calculations of
conditional expectations is needed for a given θ̃, producing a cheap-to-evaluate function in θ,
which can then be fed into any maximization algorithm.
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For any given θ̃, the calculation of the numbers zθ̃1, . . . , z
θ̃
m requires running the forward-reverse

algorithm for conditional expectations. More precisely, using the Markov property we decom-
pose

zθ̃i := Eθ̃
[
hi(X0, . . . , XN)| Xi j = xi j , j = 0, . . . , r

]
=

r∑
j=1

Eθ̃

[
h j

i (Xi j−1 , . . . , Xi j)
∣∣∣∣ Xi j−1 = xi j−1 , Xi j = xi j

]
.

All these conditional expectations are of the Markov-bridge type for which the forward-reverse
algorithm is designed. Hence, for each iteration of the EM algorithm, we apply the forward-
reverse algorithm r times, one for the time-intervals i j−1, . . . , i j, j = 1, . . . , r, evaluating all the
functionals h j

1, . . . , h
j
m at one go.

4.1. Choosing the reverse process. Recall the defining equation for the one-step transition
density q of the reverse process given in (2.12). For simplicity, we shall again assume that
the forward and the reverse processes are time-homogeneous, implying that (2.12) can be
re-expressed as

q(y, z) =
p(z, y)
ψ(y, z)

.

Notice that in this equation only p is given a-priori, i.e., the user is free to choose any re-
normalization ψ provided that for any y ∈ Rd the resulting function z 7→ q(y, z) is non-negative
and integrates to 1. In particular, we can turn the equation around, choose any transition
density q and define

ψ(y, z) :=
p(z, y)
q(y, z)

.

Note, however, that for the resulting forward-reverse process square integrability of the pro-
cessY is desirable. More precisely, only square integrability of the (numerator of the) complete
estimator corresponding to (3.5) (see 3.0.1) is required, but it seems far-fetched to hope for
any cancelations giving square integrable estimators when Y itself is not square integrable.
From a practical point of view, it therefore seems reasonable to aim for functions ψ satisfying

ψ ≈ 1,

i.e., to try to find functions ψ which are bounded from above by a number slightly smaller
than 1 and bounded from below by a number slightly smaller than 1. Indeed, note that Y is
obtained by multiplying terms of the form ψ(Yn,Yn+1) along the whole trajectory of the reverse
process Y. Hence, if ψ is bounded by a large constant, Y could easily take extremely large
values, to the extent that buffer-overflow might occur in the numerical implementation – think
of multiplying 100 numbers of order 100. On the other hand, if ψ is considerably smaller than
1, Y might take very small values, which can cause problem in particular taking into account
the division by the forward-reverse estimator for the transition density in the denominator of
the estimator 3.0.1.

Heuristically, the following procedure seems promising.

� If y 7→
∫
Rd p(z, y)dz can be computed in closed form (or so fast that one can think of a

closed formula), then choose

ψ(y) := ψ(y, z) =

∫
Rd

p(z, y)dz.
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� Otherwise, assume that we can find a non-negative (measurable) function p̃(z, y) with
closed form expression for

∫
Rd p̃(z, y)dz such that p(z, y) ≈ p̃(z, y). Then define

q(y, z) :=
p̃(z, y)∫

Rd p̃(z, y)dz
,

which is a density in z. By construction, we have

ψ(y, z) =
p(z, y)
q(y, z)

=

∫
Rd

p̃(z, y)dz
p(z, y)
p̃(z, y)

,

implying that we are (almost) back in the first situation.

Remark 4.1. Even if we can, indeed, explicitly compute ψ(y, z) =
∫
Rd p(z, y)dz, there is no

guarantee that Y has (non-exploding) finite second moments. However, in practice, this case
seems to be much easier to control and analyze.

4.2. Complexity of the forward-reverse algorithm. We end this general discussion of the
forward-reverse EM algorithm by a refined analysis of the complexity of the forward-reverse
algorithm for conditional expectations as compared to [1].

Theorem 4.2. Assume that the transition densities p and q have full support in Rd.1 Moreover,
assume that the kernel K is supported in a ball of radius R > 0. Then the forward-reverse
algorithm for N forward and reverse trajectory based on a bandwidth proportional to N−1/d can
be implemented in such a way that its cost is O(N log N) as N → ∞.

Proof. In order to increase the clarity of the argument, we re-write the double sum in the
forward-reverse algorithm 3.0.1 to a simpler form, which highlights the computational issues.
Indeed, we are trying to compute a double sum of the form

(4.3)
N∑

i=1

N∑
j=1

Fi, jKε

(
Xi

n∗ − Y j
n̂l

)
,

where Fi, j obviously depends on the whole ith sample of the forward process X and on the
whole jth sample of the reverse process (Y,Y).

We may assume that the end points Xi
n∗ and Y j

n̂l
of the N samples of the forward and reverse

trajectories are contained in a compact set [−L, L]d. (Indeed, the necessary re-scaling opera-
tion can obviously be done with O(N) operations.) In fact, for ease of notation we shall assume
that the points are actually contained in [0, 1]d. We sub-divide [0, 1]d in boxes with side-length
S ε, where S > R is chosen such that 1/(S ε) ∈ N. Note that there are K := (S ε)−d boxes which
we order lexicographically and associate with the numbers 1, . . . ,K accordingly.

In the next step, we shall order the points Xi
n∗ and Y j

n̂l
into these boxes. First, let us define a

function f1 : [0, 1]d → {1, . . . , 1/(S ε)}d by setting

f1(x) := (dx1/(S ε)e, . . . , dxd/(S ε)e) ,

with d·e denoting the smallest integer larger or equal than a number. Moreover, define f2 :
{1, . . . , 1/(S ε)}d → {1, . . . ,K} by

f2(i1, . . . , id) := (i1 − 1)(S ε)−d+1 + (i2 − 1)(S ε)−d+2 + · · · + (id − 1) + 1.

1Obviously, this assumption can be weakened.
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Obviously, a point x ∈ [0, 1]d is contained in the box number k if and only if f2( f1(x)) = k.2

Now we apply a sorting algorithm like quick-sort to both sets of points
(
X1

n∗ , . . . , X
N
n∗
)

and(
Y1

n̂l
, . . . ,YN

n̂l

)
using the ordering relation defined on [0, 1]d × [0, 1]d by

x < y :⇐⇒ f2( f1(x)) < f2( f1(y)).

Sorting both sets incurs a computational cost of O(N log N), so that we can now assume that
the vectors Xi

n∗ and Y i
n̂l

are ordered.

Notice that Kε(x − y) , 0 if and only if x and y are situated in neighboring boxes, i.e., if
| f1(x) − f1(y)|∞ ≤ 1, where we define |α|∞ := maxi=1,...,d |αi| for multi-indices α. Moreover, there
are 3d such neighboring boxes, whose indices can be easily identified, in the sense that there
is a simple set-valued function f3 which maps an index k to the set of all the indices f3(k) of
the 3d neighboring boxes.3 Moreover, for any k ∈ {1, . . . ,K} let Xi(k)

n∗ be the first element of the
ordered sequence of Xi

n∗ lying in the box k. Likewise, let Y j(k)
n̂l

be the first element in the ordered

sequence Y j
n̂l

lying in the box with index k. Note that identifying these 2K indices i(1), . . . , i(K)
and j(1), . . . , j(K) can be achieved at computational costs of order O(K log N) = O(N log N).

After all these preparations, we can finally express the double sum (4.3) as

(4.4)
N∑

i=1

N∑
j=1

Fi, jKε

(
Xi

n∗ − Y j
n̂l

)
=

K∑
k=1

∑
r∈ f3(k)

i(k+1)−1∑
i=i(k)

j(r+1)−1∑
j= j(r)

Fi, jKε

(
Xi

n∗ − Y j
n̂l

)
.

Regarding the computational complexity of the right hand side, note that

K = O(N),

| f3(k)| ≤ 3d,

i(k + 1) − i(k) ∼ (S ε)dN ∼ S dN−1N = O(1) on average,

j(r + 1) − j(r) ∼ (S ε)dN ∼ S dN−1N = O(1) on average.

Hence, after all the pre-computations of total cost O(N log N) the final summation (4.4) incurs
a computational cost of order O(N). �

Remark 4.3. As becomes apparent in the proof of Theorem 4.2, the constant in front of the
asymptotic complexity bound does depend exponentially on the dimension d.

4.3. A discrete Cox-Ingersoll-Ross example. Consider the Markov chain given by

(4.5) Xn+1 = Xn + λ (θ − Xn) ∆t + σ |Xn|
γ ∆Wn+1,

where ∆t is fixed and ∆Wn are independent random variables distributed according toN(0,∆t).
Moreover, we assume that 0 ≤ γ is fixed and known. The other parameters σ, λ and θ are not
considered known and need to be estimated. We are mainly interested in the case γ = 1/2,
which corresponds to some kind of Euler discretization of the Cox-Ingersoll-Ross model from
finance.

2To make this construction fully rigorous, we would have to make the boxes half-open and exclude the boundary
of [0, 1]d.

3Strictly speaking, only those boxes which are not neighbors of the boundary of [0, 1]d have 3d neighbors.
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For the forward-reverse algorithm, we next need to specify the reverse chain. In this case, we
propose to take the following reverse chain:

(4.6) Yn+1 = Yn − λ (θ − Yn) ∆t + σ |Yn|
γ ∆W̃n+1.

In order to get the dynamics of Y, we need to derive the normalization function ψ between the
one-step transition densities p of the forward and q of the reverse processes. (We suppress
the indices as we are in a time-homogeneous situation.) For (4.5) together with (4.6) the one-
step transition densities are normal densities in the forward variables,

p(x, y) =
1

√
2π∆tσ |x|γ

exp
(
−

(y − x − λ(θ − x)∆t)2

2σ2 |x|2γ ∆t

)
,

q(y, z) =
1

√
2π∆tσ |y|γ

exp
(
−

(z − y + λ(θ − y)∆t)2

2σ2 |y|2γ ∆t

)
.

Hence, we get

(4.7) ψ(y, z) =
p(z, y)
q(y, z)

=

∣∣∣∣∣yz
∣∣∣∣∣γ exp

(
−

1
2σ2∆t

[
(y − z − λ(θ − z)∆t)2

|z|2γ
−

(z − y + λ(θ − y)∆t)2

|y|2γ

])
.

Up to constant terms (in the un-known parameters σ, λ and θ), the log-likelihood function of a
sequence of observations x = (x0, . . . , xN) of the full path of the process X is given by

`c (σ, λ, θ; x) = log

 N∏
i=1

p(xi−1, xi)


= −N logσ −

1
2σ2∆t

N∑
i=1

(xi − (1 − λ∆t)xi−1 − λθ∆t)2

|xi−1|
2γ

= −N logσ −
1

2σ2∆t

N∑
i=1

[
x2

i

|xi−1|
2γ − 2(1 − λ∆t)

xixi−1

|xi−1|
2γ

− 2λθ∆t
xi

|xi−1|
2γ + (1 − λ∆t)2 x2

i−1

|xi−1|
2γ

+ 2λθ∆t(1 − λ∆t)
xi−1

|xi−1|
2γ + λ2θ2∆t2 1

|xi−1|
2γ

]
.

Again, assume that we actually observe xi0 , . . . , xir with i0 = 0 < · · · < ir = N, while the
remaining points x j, j < {i0, . . . , ir}, are assumed to be unobserved. Define random variables
Z0 := N and

Z1 :=
N∑

i=1

X2
i

|Xi−1|
2γ , Z2 :=

N∑
i=1

Xi

|Xi−1|
2γ ,

Z3 :=
N∑

i=1

Xi−1Xi

|Xi−1|
2γ , Z4 :=

N∑
i=1

1

|Xi−1|
2γ ,

Z5 :=
N∑

i=1

Xi−1

|Xi−1|
2γ , Z6 :=

N∑
i=1

X2
i−1

|Xi−1|
2γ .

Hence, we have with X = (X0, . . . , XN)

`c (σ, λ, θ; X) = −Z0 logσ −
1

2σ2∆t
[
Z1 − 2λθ∆tZ2 − 2(1 − λ∆t)Z3

+ λ2θ2∆t2Z4 + 2λθ∆t(1 − λ∆t)Z5(1 − λ∆t)2Z6
]
.
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Then we do the E-step. Given guesses σn, λn, θn for the parameters, let

zi := Eσn,λn,θn
[
Zi| Xi0 = xi0 , . . . , Xir = xir

]
, i = 0, . . . , 7,

and observe that

Q(σ, λ, θ;σn, λn, θn; xi0 , . . . , xir ) := Eσn,λn,θn
[
`c (σ, λ, θ; X)| Xi0 = xi0 , . . . , Xir = xir

]
= −z0 logσ −

1
2σ2∆t

[
z1 − 2λθ∆tz2 − 2(1 − λ∆t)z3

+ λ2θ2∆t2z4 + 2λθ∆t(1 − λ∆t)z5(1 − λ∆t)2z6
]
.

Remark 4.4. Note that in particular z4 will only be defined when γ < 1/2, which we assume
from now on. Indeed, unlike in the continuous time CIR model, there are no possible parameter
regimes preventing the process to become negative with positive probability. Of course, there
are other possible discretizations of the CIR model which lead to Markov chains which do
not have the problem of non-integrability of the log-likelihood function. For instance, we can
consider the logarithm of the CIR process (assuming the Feller condition to hold), compute its
dynamics by Ito’s formula and then discretise the resulting stochastic differential equation.

The first order conditions for finding the maximum of (σ, λ, θ) 7→ Q(σ, λ, θ;σn, λn, θn; xi0 , . . . , xir )
are given by

∂σQ = −
z0

σ
+

1
σ3∆t

[
z1 − 2λθ∆tz2 − 2(1 − λ∆t)z3

+ λ2θ2∆t2z4 + 2λθ∆t(1 − λ∆t)z5(1 − λ∆t)2z6
]
,

∂λQ = −
1

2σ2∆t
[
−2θ∆tz2 + 2∆tz3 + 2λθ2∆t2z4

+ 2θ∆t(1 − 2λ∆t)z5 − 2∆t(1 − λ∆t)z6
]
,

∂θQ = −
λ

2σ2∆t
[
−2∆tz2 + 2λθ∆t2z4 + 2∆t(1 − λ∆t)z5

]
,

and we obtain the maximizers given by

σ2 =
z2

3z4 − 2z2z3z5 + z1z2
5 + z2

3z6 − z1z4z6

∆tz0
(
z2

5 − z4z6
) ,

λ =
z3z4 − z2z5 + z2

5 − z4z6

∆t
(
z2

5 − z4z6
) ,

θ =
z3z5 − z2z6

z3z4 − z2z5 + z2
5 − z4z6

.

4.4. Simulation example: Ornstein-Uhlenbeck dynamics. In this section we apply the forward-
reverse EM algorithm to simulated data from a discretized Ornstein-Uhlenbeck process, that
is obtained from (4.5) by setting σ = 1 and θ = γ = 0. The corresponding Markov chain is thus
given by

(4.8) Xn+1 = Xn + λXn∆t + ∆Wn+1,

where Wn is as in Section 4.3. The drift parameter λ ∈ R is unknown and we will employ
the forward reverse EM algorithm to estimate it from simulated data. The Ornstein-Uhlenbeck
model has the advantage that the likelihood estimator is available in closed form and we can
thus compare it to the results of the EM algorithm.
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∆t N bandwidth mean λ̂ std dev λ̂ likel. std dev likel.

0.1 2000 0.0005 0.972 0.0135 -3.402 0.00290
8000 0.000125 1.098 0.00841 -3.383 0.00062
32000 3.125e-05 1.132 0.00476 -3.381 0.000123
128000 7.812e-06 1.151 0.00236 -3.381 2.783e-05
512000 1.953e-06 1.157 0.00117 -3.381 4.745e-06
2048000 4.882e-07 1.159 0.000581 -3.381 1.005e-06

0.05 2000 0.0005 1.160 0.0141 -3.107 0.000854
8000 0.000125 1.247 0.00872 -3.103 9.867e-05
32000 3.125e-05 1.253 0.00468 -3.103 1.329e-05
128000 7.812e-06 1.265 0.00225 -3.103 3.772e-06
512000 1.953e-06 1.265 0.00111 -3.103 6.005e-07

Table 1. Behavior of the forward-reverse EM algorithm for a discretized
Ornstein-Uhlenbeck model for different step sizes ∆t, initial guess λ = 0.5
and true MLE λ̂MLE = 1.161 and 1.266

In each simulation run we suppose that we have known observations

X0, X10∆t, . . . , X40∆t

for varying step size ∆t and use the EM methodology to approximate the likelihood function in
between. We perform six iteration of the algorithm with increasing number of data points N.

In table 1 we summarize the results of two runs for the discrete Ornstein-Uhlenbeck chain.
The mean and standard deviation are estimated from 1000 Monte Carlo iterations. We find
that already after three steps the mean is very close to the corresponding estimate of the
true MLE. This indicates a surprisingly fast convergence for this example. Note also that the
approximated value of the likelihood function stabilizes extremely fast at the maximum.

Table 2 gives results for the same setup as in Table 1 but with initial guess λ = 2 such
that the forward-reverse EM algorithm converges from above to the true maximum of the
likelihood function. We observe that the smaller step size ∆t = 0.05 results in a more accurate
approximation of the likelihood and also of the true MLE. It seems that the step size has crucial
influence on the convergence rate of the algorithm, since for ∆t = 0.05 the likelihood stabilizes
already from the second iteration.

In Figure 1 the empirical distribution of 1000 estimates for λ is plotted. The initial value was
0.5 and the true maximum of the likelihood function is at 1.161. The step size between ob-
servations was chosen to be ∆t = 0.1. The histogram on the left shows the estimates after
only one iteration and on the right the estimates were obtained from five iterations of the
forward-reverse EM algorithm.

Figure 2 depicts the distribution of 1000 Monte Carlo samples of the likelihood values that led
to the estimates in Figure 1. It is interesting to see that after one iteration of the algorithm the
likelihood values are approximately bell shaped (left histogram) whereas after five iterations
the distributions becomes more and more one-sided as would be expected, since the EM
algorithm only increase the likelihood from step to step towards the maximum.

Figure 3 shows the convergence of the forward reverse EM algorithm when the number of
iterations increases. We find that already after 4 iterations the estimate is very close to the
true MLE for λ. After six iterations the algorithm has almost perfectly stabilized at the value of
the true MLE λ = 1.16.
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∆t N bandwidth mean λ̂ std dev λ̂ likel. std dev likel.

0.1 2000 0.0005 1.554 0.0353 -3.457 0.0134
8000 0.000125 1.312 0.0127 -3.393 0.00221
32000 3.125e-05 1.217 0.00544 -3.382 0.000351
128000 7.812e-06 1.185 0.00245 -3.381 5.817e-05
512000 1.953e-06 1.168 0.00121 -3.381 1.227e-05

0.05 2000 0.0005 1.390 0.0248 -3.108 0.00238
8000 0.000125 1.289 0.00925 -3.103 0.000130
32000 3.125e-05 1.261 0.00471 -3.103 1.451e-05
128000 7.812e-06 1.266 0.00221 -3.103 2.538e-06
512000 1.953e-06 1.266 0.00113 -3.103 5.855e-07

Table 2. Behavior of the forward-reverse EM algorithm for a discretized
Ornstein-Uhlenbeck model for different step sizes ∆t, initial guess λ = 2 and
true MLE λ̂MLE = 1.161 and 1.266
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Figure 1. Empirical distribution of 1000 estimates after one iteration (right) and
after five iteration (left) of the forward-reverse EM algorithm.
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Figure 3. Convergence of the forward-reverse EM algorithm from one to six
iterations for each 1000 estimates of λ. The value of the true MLE is λ̂ = 1.161.
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