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Motivation for Structural Data Analysis

Under physical constraints of constant volume and temperature we observe:

Figure: Changes between different conformations of a biological active
molecule.

Observe that small variations around stable geometric mean configurations of a
molecule, called conformations, correspond to connected set of the state space.

Motive: The large scale geometry of a molecular system determines its
biological function.
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Different Time Scales in the Dynamics

Observation: Changes of geometric large scale configurations of a molecule
have life times much longer than the time scale of the internal interactions
between the atoms and the random perturbations of the molecule from the
solvent.

Figure: Backbone of alanine-dipeptid with dihedral-angels (Φ, Ψ).

The rotational degrees of freedom (Φ,Ψ) allow to observe the rare macroscopic
folding events of a biomolecule as a change of the geometric configuration of
the backbone.
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Detection of Rare Events in High Dimensional Time Series

Figure: Selected dihedral angels of 12-alanine obtained from MD-simulations.

Curse of dimensionality: Due to the inherent sparsity of high-dimensional data
statistical analysis is typically unreliable and prohibitively time consuming.
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Stochastic Dimension Reduction

General Picture of Dimension Reduction for Biomolecules

Observation: In conformational dynamics the detection of rare folding events
coincides with structural data analysis.

Figure: Aim: find a linear combination of dihedrals s.t. the rare folding events
can be observed in a low dimensional subspace.
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Stochastic Dimension Reduction

Unsupervised Feature Extraction Using Projections

Data X1, . . . ,Xn ∈ Rd i.i.d., d large. For simplicity let IE [Xi ] = 0 for all i .

Basic Observation: High dimensional data tends to be normal.

Problem: a random projection X>ω is almost approximately normal for most
of the arbitrary directions ω ∈ Bd , where Bd is the d-dimensional unit ball.

Approach: Gaussian component of the data is entropy-maximizing and hence
uninformative (noise). Project the data on the non-Gaussian components.

Requirements:

i) No apriori knowledge about the data density is used.

ii) No dependency on the magnitude of second moments of Gaussian and
non-Gaussian components as found e.g. in PCA.

iii) No unrealistic assumptions on the whole data density as found e.g. in
ICA.
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The Stationary Model

The Semi-Parametric Model

Let X1, . . . ,XN ∈ Rd be i.i.d. random observable, distributed according to the
structured and stationary density

ρ(x) = φµ=0,Σ(x)q(Tx) (1)

This links pure Gaussian Analysis (PCA) and pure NonGaussian Analysis (ICA).

q : Rm → R, m ≤ d is a smooth nonlinear function.
T : Rd → Rm is a linear operator with I = Ker(T )⊥.
I is the linear subspace of the non-Gaussian components.

goal: Estimate a projector without estimating the model parameter q and
covariance matrix Σ.

interpretation: (1) lead to the stationary data model X = Z + ζ where ζ
represents independent Gaussian noise components and Z the signal.
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The Stationary Model

Estimation Procedure

Lemma
Assume that ρ(x) is the structured density according to (1) with µ = 0. If
ψ(x) ∈ C1(Rd ,R) has the property

IE
[
xψ(x)

]
= 0 (2)

then one can show that

β(ψ) = IE
[
∇ψ(x)

]
∈ I (3)

Moreover, if (2) is not fulfilled, then there exists a vector β ∈ I s.t.

‖β − β(ψ)‖2 ≤ ‖Σ−1

∫
(x − µ)ψ(x)ρ(x) dx‖2 = ε (4)

i.e. dist(β(ψ), I) is uniformly bounded.
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The Stationary Model

Algorithmic Realization of the Lemma

idea: Compute ψ(x) from the data using the linear approach:

ψh,c(x) =
L∑

l=1

clhω(x) (5)

Let N be the sample size. If we find coefficients {cl}Ll=1 such that

IE
[
xψh,c(x)

]
≈ 1

N

N∑
n=1

Xnψh,c(Xn) =
1

N

N∑
n=1

L∑
l=1

clXnhωl (Xn)= 0

it follows that β ∈ I with

β = IE
[
∇ψh,c(x)

]
≈ 1

N

N∑
n=1

∇ψh,c(Xn) =
1

N

N∑
n=1

L∑
l=1

cl∇hωl (Xn)

By the right choice ”test functions” hω(x) ∈ C1,1(Rd × Rd ,R) are informative
with respect to non-Gaussianity.
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The Stationary Model

Algorithmic Realization of the Lemma cont’d

Remaining tasks:

a) Sampling of the data space using an appropriate function hω(x).

b) Find ”good” coefficients {cl}Ll=1 with low computational effort.

c) Construct an ONB for the estimated target space Î.

d) Determine the reduced dimension m.

Note that the use of the semi-parametric framework combined with the Lemma
is not unique:

(A) iterative approach: utilize {β̂(k)
j }

J
j=1 for recovering a sequence of target

spaces Î(k).

(B) non-iterative approach: direct estimation of the projector Π onto the

target space Î.
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The Stationary Model

Directional Sampling (both approaches)
Consider the functions of the form

hω(x) := h(ω>x)e−λ‖x‖
2/2

with a smooth function h and a vector ω ∈ Bd , where Bd denotes the unit
ball in Rd . Define also

γ̂ω := N−1∑
i Xi hω(Xi ) ≈ γω := IE

[
Xhω(X )

]
η̂ω := N−1∑

i ∇hω(Xi ) ≈ ηω := IE
[
∇hω(X )

]
.

Then for the estimation accuracy it holds

Theorem
Let hω be bounded and continuously differentiable. Then there is C = C(h)
s.t.

IE sup
ω∈Bd

∣∣γ̂ω − γω∣∣2 +
∣∣η̂ω − ηω∣∣2 ≤ CN−1d2 =: ε2.
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Convex Projection

Iterative ”Convex Projection” Approach

Idea: For a given set {ω1, . . . , ωL} construct ψ as convex combinations of the
hω` (·) : ψ(·) =

∑
` c`hω` (·) .

Convex optimization: given an arbitrary probe vector ξ ∈ Bd , solve the
non-smooth, convex problem

{ĉ`} = arg min
‖c‖1≤1

∥∥∥ξ −∑
`

c`η̂ω`

∥∥∥2

2
subject to

∑
`

c`γ̂ω` = 0.

Then define an estimator β̂ of β ∈ I as

β̂
def
=
∑
`

ĉ`η̂ω` .

and utilize {β̂j}Jj=1 for recovering the m -dimensional non-Gaussian target
space I.
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Convex Projection

Accuracy of the ”Convex Projection”-Approach

”Ideal” vs. empirical projection:

{c∗` } = arg min
‖c‖1≤1

∥∥∥ξ −∑` c`ηω`

∥∥∥
2

s.t.
∑
` c`γω` = 0,

{ĉ`} = arg min
‖c‖1≤1

∥∥∥ξ −∑` c`η̂ω`

∥∥∥
2

s.t. ‖
∑
` c`γ̂ω`‖ ≤ ε

and define:

β∗ =
∑
`

c∗` ηω` β̂ =
∑
`

ĉ`η̂ω` (6)

The the ”convex projection”-approach is associated with the accuracy result:

Theorem
Let hω(x) ∈ C1,1 have bounded variance in both arguments and let β̂ be
defined as in (6). Then there is a set A of probability at least 1− ε, that∥∥(I − Π∗)β̂

∥∥
2
≤
√

d δN
(
1 + ‖Σ−1‖2

)
,

where δN = O(N−1d).
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Dimension Reduction Step

Translation to Reduced Rank Regression Problem

Let the vectors β̂1, . . . , β̂L be given s.t.

‖(I − Π)β̂j‖2 ≤ ε

where Π is a projector on a m -dimensional target space.

Reduced Rank Regression problem: for given m , recover Π .

More challenging: recover m and I .

First guess to RRR: use PCA

Î = arg min
dim(I)=m

∑
j

‖(I − Π)β̂j‖2 = 〈first m eigenvectors of
∑

j

β̂j β̂
>
j 〉.

However it turns out numerically that this works poorly if most of the β̂j ’s are
non-informative.
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Dimension Reduction Step

Reduced Rank Regression using Rounding Ellipsoids

Next guess: use the rounding ellipsoid of the symmetrized convex set

S
def
=
〈
β̂1,−β̂1, β̂2,−β̂2, . . .

〉
.

E(B) ≡ E1(B) is α -rounding ellipsoid for S if

E1/α(B) ⊆ S ⊆ E(B), α ≤ 1,

where Er (B)
def
= {x ∈ Rd | x>Bx ≤ r 2}, .

Theorem (F. John, 1985; Nesterov, 2004)
For any convex S ⊂ Rd , there exists a rounding ellipsoid with α = d−1/2 .

Advantage: To recover I compute the principal axis of E(B) with complexity
O(d2J log J) and select some of them according to a criterion of multimodality.
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Dimension Reduction Step

Accuracy of the ”Rounding Ellipsoid” Solution

Theorem
1. For any unit vector v ⊥ I ,

v>B−1v ≤ δ2.

2. If there is w ∈ RJ with wj ≥ 0 and
∑

j wj = 1 such that

λm

(∑
j

wjβjβ
>
j

)
> 2δ2,

and Π̂ projects on the m principal eigenvectors of B−1 , then

‖Π̂− Π∗‖2
2 ≤ C(δ2)O(d

√
d).
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Dimension Reduction Step

Iteration allows for Structural Adaptation

Use the estimated ellipsoid Ek−1 as a prior information to improve the quality
of estimation.

This leads to sequential procedure: alternate two steps

i) estimate the model vector βj using a given structure

ii) estimate the structure, i.e. the rounding ellipsoid E

Method: sample some of the probe vectors ξj and some vectors ω`,j due to
identified semi-axis of Ek−1 .

This ensures that a certain fraction of ξj , γ̂`,j and η̂`,j is informative and

hence, the corresponding solutions β̂j are informative as well.
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Complexity

Computability in High Dimensions

The iterative approach leads to one quadratic, constrained optimization
problem (QCP) for each βj ∈ T .

However about fast interior-point-methods (IPM) to high accuracy we know:

1) Assembling and solving a L× L Newton system of linear equations takes
O(L3) operations unless the matrix of the system is highly sparse with
favourable patterns.

2) SNGCA leads to optimization problems with dense Newton systems.

In the context of the ”convex projection”-approach O(JLN2 + (16L)3)
operations are needed for the k th iteration of SNGCA.
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Reformulation as SDP

”Semidefinite Programming”-Approach

Some notations: let

i) G ∈ Rd×L be a matrix of averaged gradients of test functions hω with
columns ηl

ii) U ∈ Rd×L a matrix of averaged functions xhω with columns γl .

and let Ĝ ∈ Rd×L and Û ∈ Rd×L from the data counterparts respectively s.t.

‖G − Ĝ‖2 ≤ ε and ‖U − Û‖2 ≤ ε.

Then solve the non-convex, non-smooth contrained problem

min
Π

max
c

{
‖(I − Π)Ûc‖2

2

∣∣∣∣ 0 � Π � I , Tr[Π] = m, rankΠ = m;

c ∈ RL, ‖c‖1 ≤ 1, ‖Ĝc‖2 ≤ δ

}
. (7)
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Reformulation as SDP

Recipe of Semidefinite Relaxation

idea: drop constraints to get convexity and than solve.

i) Use the identity:

‖(I − Π)Ûc‖2
2 = Tr

[
Û(I − Π)ÛX

]
. (8)

ii) Linearization: consider the positive semidefinite matrix X = ccT with
rankX = 1 as ”new variable”.

iii) Set |X |1
def
=
∑L

i,j=1 |Xij | and transform ‖Ĝc‖2 ≤ δ into Tr[ĜX Ĝ ] ≤ δ2.

iv) Drop the non-convex constraints rankX = 1 and rankΠ = m.

Then we arrive at the relaxed semidefinite constrained problem:

min
P

max
X

{
Tr
[
Û(I − P)ÛX

] ∣∣∣∣ 0 � P � I , Tr[P] = m,

X � 0, |X |1 ≤ 1, Tr[ĜX Ĝ ] ≤ δ2

}
. (9)
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Reformulation as SDP

Bounds for Relaxation Error

Theorem
Suppose that the projector Π∗ is µ∗ times a convex combination of rank-one
matrices UccT UT where c satisfies the constraints Gc = 0 and ‖c‖1 ≤ 1, i.e.

Π∗ �
m∑

k=1

µkUckcT
k UT . (10)

Then an optimal solution P̂ of the relaxed problem satisfies

Tr
[

(I − P̂)Π∗
]
≤ 4µ∗ε2(λ−1

min(Σ) + 1)2. (11)

Further, if Π̂ is the projector onto the subspace spanned by m principal
eigenvectors of P̂, then

‖Π̂− Π∗‖2
2 ≤

8µ∗ε2(λ−1
min(Σ) + 1)2

1− 4µ∗ε2(λ−1
min(Σ) + 1)2

(12)
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Reformulation as SDP

How to Include the Constraints

Observe that ĜT Ĝ = ΓΛΓT and X are symmetric and positive. Hence:

Tr(ĜT ĜX ) = 0 ⇒ X = QZQT (13)

where Z ∈ SL−d and Q ∈ SL×(L−d) is a submatrix of columns of Γ
corresponding to the vanishing eigenvalues of ĜT Ĝ .

Let V = ĜQ. Than we get a regularized and hence unconstrained convex
reformulation of the relaxed problem:

min
Π,W

[
max

Z∈Z,Y
Tr[V T (I − ΠÎ)VZ ] + Tr[W (QZQT − Y )]

]
(14)

where Z ∈ Z and Z := {Z ∈ SL−d | Z � 0,Tr(Z) ≤ 1}.

The latter problem can be solved using a gradient-type method with complexity

O(d log d) and O(ε−1) iterations (Nesterov 2007).
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Artificial Examples

Non-gaussian Components of Test Densities

Figure: (A) 2 d independent Gaussian mixtures, (B) 2 d isotropic
super-Gaussian, (C) 2 d isotropic uniform and (D) dependent 1 d
Laplacian with additive 1 d uniform with N = 1000 respectively.
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Artificial Examples

One Step Improvement of the Iterative Approach

Figure: Sub-Gaussian density with 2 components in R20

E. Diederichs@FU Berlin FU and others

Project A10@Matheon



Conformational Changes of Biomolecules Semi-parametric framework Iterative Approach Non-iterative Approach Numerical Examples

Artificial Examples

Error Criterion

The closeness of the subspaces I and its estimate Î can be measured by the
error function

E(Î, I)
def
==

1

m

m∑
i=1

‖(I − Π)vi‖2 (15)

where Π denotes the orthogonal projection onto Î , {vi}mi=1 is an orthonormal

basis of Î and I denotes the identity matrix.
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Artificial Examples

Comparison dimension

Figure: Comparison of PP, iterative and non-iterative SNGCA by
estimation error for increasing dimensionality .
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Artificial Examples

Comparison noise

Figure: Comparison of PP, iterative and non-iterative SNGCA for
increasing numerical condition for Σ−1 .
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Real World Examples

Application to Protein Study

The molecule was simulated using CHARMM with an implicit water
environment at 300K . We analyzed a 1̀ıs long simulation with 2fs time steps
observing the 33 backbone torsion angles.

Figure: most probable conformations of 12-alanine, α-helix and β-sheet
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Real World Examples

SNGCA-result of 12-alanine

Figure: reduced gaussian target space of 12-alanineE. Diederichs@FU Berlin FU and others
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Real World Examples

Summary

1) Structural data analysis based on the non-Gaussian vs. Gaussian
distinction is effective and computational not too expansive.

2) Semidefinite relaxation leads to a statistically more sensitive and
structural analysis with not too large complexity O(JN2 + d log d).

3) The stochastic reduction of dimensionality works also with stochastic
dynamical systems like large biomolecules.
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Real World Examples
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Real World Examples
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Real World Examples

Final Slide

Thank you for your attention!

E. Diederichs@FU Berlin FU and others

Project A10@Matheon


	Outline
	Main Talk
	Conformational Changes of Biomolecules
	Semi-parametric framework
	Stochastic Dimension Reduction
	The Stationary Model

	Iterative Approach
	Convex Projection
	Dimension Reduction Step

	Non-iterative Approach
	Complexity
	Reformulation as SDP

	Numerical Examples
	Artificial Examples
	Real World Examples



