Sparse NonGaussian Component Analysis with Applications to Conformation Dynamics of Biomolecular Systems

E. Diederichs¹

joint work with A.Juditsky³ and V. Spokoiny²

¹Free University of Berlin
 ²WIAS and Humboldt University
 ³Laboratoire Jean Kuntzmann, Université Joseph Fourier, Grenoble

June 29, 2009

FU and others

E. Diederichs@FU Berlin Project A10@Matheon

Conformational Changes of Biomolecules

emi-parametric framework Stochastic Dimension Reductic The Stationary Model

Iterative Approach

- Convex Projection Dimension Reduction Step
- Non-iterative Approach
 - Complexity Reformulation as SDP
- Numerical Examples Artificial Examples
 - **Real World Examples**

FU and others

- 4 🗇 🕨 🔺 🖹 🕨 🤘

Conformational Changes of Biomolecules Semi-parametric framework Stochastic Dimension Reduction The Stationary Model

Iterative Approach

Convex Projection Dimension Reduction Step

Non-iterative Approach

Complexity Reformulation as SDP

Numerical Examples

Artificial Examples Real World Examples

FU and others

< 17 >

3 →

Conformational Changes of Biomolecules

Semi-parametric framework

Stochastic Dimension Reduction

The Stationary Model

Iterative Approach

Convex Projection Dimension Reduction Step

Non-iterative Approach

Complexity Reformulation as SDP

Numerical Examples

Artificial Examples Real World Examples

FU and others

< 17 ▶

Conformational Changes of Biomolecules

Semi-parametric framework

Stochastic Dimension Reduction

The Stationary Model

Iterative Approach

Convex Projection Dimension Reduction Step

Non-iterative Approach

Complexity Reformulation as SDP

Numerical Examples

Artificial Examples Real World Examples

FU and others

< 17 >

Conformational Changes of Biomolecules

Semi-parametric framework

Stochastic Dimension Reduction

The Stationary Model

Iterative Approach

Convex Projection Dimension Reduction Step

Non-iterative Approach

Complexity Reformulation as SDP

Numerical Examples

Artificial Examples Real World Examples

FU and others

4 同

Conformational Changes of Biomolecules Se	emi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	0 0000	00 0000		00000 0000

Motivation for Structural Data Analysis

Under physical constraints of constant volume and temperature we observe:

Figure: Changes between different conformations of a biological active molecule.

Observe that small variations around stable geometric mean configurations of a molecule, called conformations, correspond to connected set of the state space.

EU and others

Motive: The large scale geometry of a molecular system determines its biological function.

E. Diederichs@FU Berlin

Project A10@Matheon

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00		00000 0000
	00000	0000	0000	00000

Different Time Scales in the Dynamics

Observation: Changes of geometric large scale configurations of a molecule have life times much longer than the time scale of the internal interactions between the atoms and the random perturbations of the molecule from the solvent.

Figure: Backbone of alanine-dipeptid with dihedral-angels (Φ, Ψ) .

The rotational degrees of freedom (Φ, Ψ) allow to observe the rare macroscopic folding events of a biomolecule as a change of the geometric configuration of the backbone.

E. Diederichs@FU Berlin

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000		00000 0000

Detection of Rare Events in High Dimensional Time Series

Figure: Selected dihedral angels of 12-alanine obtained from MD-simulations.

Curse of dimensionality: Due to the inherent sparsity of high-dimensional data statistical analysis is typically unreliable and prohibitively time consuming.

E. Diederichs@FU Berlin Project A10@Matheon

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	• 0 00000	00 0000		00000 0000
Stochastic Dimension Reduction				

General Picture of Dimension Reduction for Biomolecules

Observation: In conformational dynamics the detection of rare folding events coincides with structural data analysis.

Figure: Aim: find a linear combination of dihedrals s.t. the rare folding events can be observed in a low dimensional subspace.

< □ > < 同 >

3 →

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00000	00 0000		00000 0000
Stochastic Dimension Reduction				

Unsupervised Feature Extraction Using Projections

Data $X_1, \ldots, X_n \in \mathbb{R}^d$ i.i.d., *d* large. For simplicity let $\boldsymbol{E}[X_i] = 0$ for all *i*.

Basic Observation: High dimensional data tends to be normal.

Problem: a random projection $X^{\top}\omega$ is almost approximately normal for most of the arbitrary directions $\omega \in \mathcal{B}_d$, where \mathcal{B}_d is the *d*-dimensional unit ball.

Approach: Gaussian component of the data is entropy-maximizing and hence uninformative (noise). Project the data on the non-Gaussian components.

Requirements:

- i) No apriori knowledge about the data density is used.
- ii) No dependency on the magnitude of second moments of Gaussian and non-Gaussian components as found e.g. in PCA.
- iii) No unrealistic assumptions on the whole data density as found e.g. in ICA.

・ロット (雪) (日) (日)

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 •0000	00 0000		00000 0000
The Stationary Model				

The Semi-Parametric Model

Let $X_1, \ldots, X_N \in \mathbb{R}^d$ be i.i.d. random observable, distributed according to the structured and stationary density

$$\rho(\mathbf{x}) = \phi_{\mu=0,\Sigma}(\mathbf{x})q(\mathbf{T}\mathbf{x}) \tag{1}$$

This links pure Gaussian Analysis (PCA) and pure NonGaussian Analysis (ICA).

 $q: \mathbb{R}^m \to \mathbb{R}, \ m \leq d$ is a smooth nonlinear function. $T: \mathbb{R}^d \to \mathbb{R}^m$ is a linear operator with $\mathcal{I} = Ker(T)^{\perp}$. \mathcal{I} is the linear subspace of the non-Gaussian components.

goal: Estimate a projector without estimating the model parameter q and covariance matrix Σ .

interpretation: (1) lead to the stationary data model $X = Z + \zeta$ where ζ represents independent Gaussian noise components and Z the signal.

イロト イポト イヨト イヨト

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 0●000	00 0000		00000 0000
The Stationary Model				

Estimation Procedure

Lemma

Assume that $\rho(x)$ is the structured density according to (1) with $\mu = 0$. If $\psi(x) \in C^1(\mathbb{R}^d, \mathbb{R})$ has the property

$$\boldsymbol{E}\left[\boldsymbol{x}\boldsymbol{\psi}(\boldsymbol{x})\right] = \boldsymbol{0} \tag{2}$$

then one can show that

$$\beta(\psi) = \boldsymbol{E} \Big[\nabla \psi(\mathbf{x}) \Big] \in \mathcal{I}$$
(3)

Moreover, if (2) is not fulfilled, then there exists a vector $\beta \in \mathcal{I}$ s.t.

$$\|\beta - \beta(\psi)\|_2 \le \|\Sigma^{-1} \int (x - \mu)\psi(x)\rho(x) dx\|_2 = \epsilon$$
(4)

i.e. dist $(\beta(\psi), \mathcal{I})$ is uniformly bounded.

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00 0 00	00		00000 0000
The Stationers Medal				

Algorithmic Realization of the Lemma

idea: Compute $\psi(x)$ from the data using the linear approach:

$$\psi_{h,c}(x) = \sum_{l=1}^{L} c_l h_{\omega}(x)$$
(5)

EU and others

Let N be the sample size. If we find coefficients $\{c_i\}_{i=1}^{L}$ such that

$$\boldsymbol{E}\left[x\psi_{h,c}(x)\right]\approx\frac{1}{N}\sum_{n=1}^{N}X_{n}\psi_{h,c}(X_{n})=\frac{1}{N}\sum_{n=1}^{N}\sum_{l=1}^{L}c_{l}X_{n}h_{\omega_{l}}(X_{n})=\boldsymbol{0}$$

it follows that $\beta \in \mathcal{I}$ with

$$\beta = \boldsymbol{E}\Big[\nabla\psi_{h,c}(\boldsymbol{x})\Big] \approx \frac{1}{N}\sum_{n=1}^{N}\nabla\psi_{h,c}(X_n) = \frac{1}{N}\sum_{n=1}^{N}\sum_{l=1}^{L}c_l\nabla h_{\omega_l}(X_n)$$

By the right choice "test functions" $h_{\omega}(x) \in C^{1,1}(\mathbb{R}^d \times \mathbb{R}^d, \mathbb{R})$ are informative with respect to non-Gaussianity.

E. Diederichs@FU Berlin

Project A10@Matheon

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 000●0	00 0000		00000 0000
The Stationary Model				

Algorithmic Realization of the Lemma cont'd

Remaining tasks:

- a) Sampling of the data space using an appropriate function $h_{\omega}(x)$.
- b) Find "good" coefficients $\{c_l\}_{l=1}^{L}$ with low computational effort.
- c) Construct an ONB for the estimated target space $\widehat{\mathcal{I}}$.
- d) Determine the reduced dimension *m*.

Note that the use of the semi-parametric framework combined with the Lemma is not unique:

- (A) iterative approach: utilize $\{\widehat{\beta}_{j}^{(k)}\}_{j=1}^{J}$ for recovering a sequence of target spaces $\widehat{\mathcal{I}}^{(k)}$.
- (B) non-iterative approach: direct estimation of the projector Π onto the target space $\widehat{\mathcal{I}}.$

<ロ> <同> <同> < 回> < 回>

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000		00000 0000
The Stationary Model				

Directional Sampling (both approaches)

Consider the functions of the form

$$h_{\omega}(x) := h(\omega^{\top}x)e^{-\lambda \|x\|^2/2}$$

with a smooth function h and a vector $\omega \in \mathcal{B}_d$, where \mathcal{B}_d denotes the unit ball in \mathbb{R}^d . Define also

$$\widehat{\gamma}_{\omega} := N^{-1} \sum_{i} X_{i} h_{\omega}(X_{i}) \approx \gamma_{\omega} := \mathbf{E} [X h_{\omega}(X)]$$

$$\widehat{\eta}_{\omega} := N^{-1} \sum_{i} \nabla h_{\omega}(X_{i}) \approx \eta_{\omega} := \mathbf{E} [\nabla h_{\omega}(X)].$$

Then for the estimation accuracy it holds

Theorem

Let h_{ω} be bounded and continuously differentiable. Then there is C = C(h) s.t.

$$\boldsymbol{E} \sup_{\boldsymbol{\omega} \in \mathcal{B}_d} \left| \widehat{\gamma}_{\boldsymbol{\omega}} - \gamma_{\boldsymbol{\omega}} \right|^2 + \left| \widehat{\eta}_{\boldsymbol{\omega}} - \eta_{\boldsymbol{\omega}} \right|^2 \leq C N^{-1} d^2 =: \epsilon^2.$$

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00	• o 0000	0000	00000

Iterative "Convex Projection" Approach

Idea: For a given set $\{\omega_1, \ldots, \omega_L\}$ construct ψ as convex combinations of the $h_{\omega_\ell}(\cdot): \psi(\cdot) = \sum_{\ell} c_\ell h_{\omega_\ell}(\cdot)$.

Convex optimization: given an arbitrary probe vector $\xi \in \mathcal{B}_d$, solve the non-smooth, convex problem

$$\{\widehat{c}_{\ell}\} = \operatorname*{arg\,min}_{\|c\|_1 \leq 1} \left\| \xi - \sum_{\ell} c_{\ell} \widehat{\eta}_{\omega_{\ell}} \right\|_2^2 \quad \text{subject to} \quad \sum_{\ell} c_{\ell} \widehat{\gamma}_{\omega_{\ell}} = 0.$$

Then define an estimator $\widehat{\beta}$ of $\beta \in \mathcal{I}$ as

$$\widehat{\boldsymbol{\beta}} \stackrel{\text{def}}{=} \sum_{\ell} \widehat{\mathbf{c}}_{\ell} \widehat{\eta}_{\omega_{\ell}} \ .$$

and utilize $\{\widehat{\beta}_j\}_{j=1}^J$ for recovering the *m*-dimensional non-Gaussian target space \mathcal{I} .

EU and others

E. Diederichs@FU Berlin Project A10@Matheon

Convex Projection

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00000		00000 0000
Comparison in the second secon				

Accuracy of the "Convex Projection"-Approach

"Ideal" vs. empirical projection:

$$\begin{aligned} \{c_{\ell}^{*}\} &= \arg\min_{\|c\|_{1} \leq 1} \left\| \xi - \sum_{\ell} c_{\ell} \eta_{\omega_{\ell}} \right\|_{2} & \text{s.t.} \quad \sum_{\ell} c_{\ell} \gamma_{\omega_{\ell}} = 0, \\ \{\widehat{c}_{\ell}\} &= \arg\min_{\|c\|_{1} \leq 1} \left\| \xi - \sum_{\ell} c_{\ell} \widehat{\eta}_{\omega_{\ell}} \right\|_{2} & \text{s.t.} \quad \left\| \sum_{\ell} c_{\ell} \widehat{\gamma}_{\omega_{\ell}} \right\| \leq \epsilon. \end{aligned}$$

and define:

$$\beta^* = \sum_{\ell} c_{\ell}^* \eta_{\omega_{\ell}} \qquad \widehat{\beta} = \sum_{\ell} \widehat{c}_{\ell} \widehat{\eta}_{\omega_{\ell}} \tag{6}$$

< ≥ > <

EU and others

< □ > < 同 >

The the "convex projection"-approach is associated with the accuracy result:

Theorem

Let $h_{\omega}(x) \in C^{1,1}$ have bounded variance in both arguments and let $\hat{\beta}$ be defined as in (6). Then there is a set A of probability at least $1 - \epsilon$, that

$$\left\| (I - \Pi^*) \widehat{\beta} \right\|_2 \leq \sqrt{d} \, \delta_N (1 + \|\Sigma^{-1}\|_2),$$

where $\delta_N = \mathcal{O}(N^{-1}d)$.

E. Diederichs@FU Berlin

Project A10@Matheon

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000		00000 0000
Dimension Peduction Ston				

Translation to Reduced Rank Regression Problem

Let the vectors $\widehat{\beta}_1, \ldots, \widehat{\beta}_L$ be given s.t.

 $\|(I - \Pi)\widehat{\beta}_j\|_2 \leq \epsilon$

where Π is a projector on a *m*-dimensional target space.

Reduced Rank Regression problem: for given m, recover Π .

More challenging: recover m and \mathcal{I} .

First guess to RRR: use PCA

$$\widehat{\mathcal{I}} = \underset{dim(\mathcal{I})=m}{\operatorname{arg\,min}} \sum_{j} \|(I - \Pi)\widehat{\beta}_{j}\|^{2} = \langle \text{first } m \text{ eigenvectors of } \sum_{j} \widehat{\beta}_{j} \widehat{\beta}_{j}^{\top} \rangle.$$

However it turns out numerically that this works poorly if most of the $\hat{\beta}_j$'s are non-informative.

<ロ> <四> <四> <日> <日> <日</p>

EU and others

E. Diederichs@FU Berlin Project A10@Matheon

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach ○○ ○●○○	Non-iterative Approach 0 0000	Numerical Exam 00000 0000
Dimension Reduction Step				

Reduced Rank Regression using Rounding Ellipsoids

Next guess: use the rounding ellipsoid of the symmetrized convex set

$$\mathbb{S} \stackrel{\text{def}}{=} \langle \widehat{\beta}_1, -\widehat{\beta}_1, \widehat{\beta}_2, -\widehat{\beta}_2, \ldots \rangle.$$

 $\mathcal{E}(B) \equiv \mathcal{E}_1(B)$ is α -rounding ellipsoid for S if

$$\mathcal{E}_{1/\alpha}(B) \subseteq \mathbb{S} \subseteq \mathcal{E}(B), \qquad \alpha \leq 1,$$

where $\mathcal{E}_r(B) \stackrel{\text{def}}{=} \{x \in \mathbb{R}^d | x^\top B x \leq r^2\},.$

Theorem (F. John, 1985; Nesterov, 2004)

For any convex $\mathbb{S} \subset \mathbb{R}^d$, there exists a rounding ellipsoid with $\alpha = d^{-1/2}$.

Advantage: To recover \mathcal{I} compute the principal axis of $\mathcal{E}(\mathcal{B})$ with complexity $\mathcal{O}(d^2 J \log J)$ and select some of them according to a criterion of multimodality.

・ロン ・回 と ・ 回 と ・

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000		00000 0000
Dimension Peduction Ston				

Accuracy of the "Rounding Ellipsoid" Solution

Theorem

1. For any unit vector $v \perp \mathcal{I}$,

$$\mathbf{v}^{\top} \mathbf{B}^{-1} \mathbf{v} \leq \delta^2.$$

2. If there is $w \in \mathbb{R}^J$ with $w_j \ge 0$ and $\sum_j w_j = 1$ such that

$$\lambda_m \left(\sum_j w_j \beta_j \beta_j^\top \right) > 2\delta^2$$

and $\widehat{\Pi}$ projects on the *m* principal eigenvectors of B^{-1} , then $\|\widehat{\Pi} - \Pi^*\|_2^2 \leq C(\delta^2)\mathcal{O}(d\sqrt{d}).$

E. Diederichs@FU Berlin Project A10@Matheon FU and others

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach $\stackrel{\circ\circ}{_{\circ\circ\circ}}$	Non-iterative Approach 0 0000	Numerical Exam 00000 0000
Dimension Reduction Step				

Iteration allows for Structural Adaptation

Use the estimated ellipsoid \mathcal{E}_{k-1} as a prior information to improve the quality of estimation.

This leads to sequential procedure: alternate two steps

- i) estimate the model vector β_j using a given structure
- ii) estimate the structure, i.e. the rounding ellipsoid $\,\mathcal{E}$

Method: sample some of the probe vectors ξ_j and some vectors $\omega_{\ell,j}$ due to identified semi-axis of \mathcal{E}_{k-1} .

This ensures that a certain fraction of ξ_j , $\widehat{\gamma}_{\ell,j}$ and $\widehat{\eta}_{\ell,j}$ is informative and hence, the corresponding solutions $\widehat{\beta}_j$ are informative as well.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000	0000	00000 0000
Complexity				

Computability in High Dimensions

The iterative approach leads to one quadratic, constrained optimization problem (QCP) for each $\beta_j \in \mathcal{T}$.

However about fast interior-point-methods (IPM) to high accuracy we know:

- 1) Assembling and solving a $L \times L$ Newton system of linear equations takes $\mathcal{O}(L^3)$ operations unless the matrix of the system is highly sparse with favourable patterns.
- 2) SNGCA leads to optimization problems with dense Newton systems.

In the context of the "convex projection"-approach $\mathcal{O}(JLN^2 + (16L)^3)$ operations are needed for the k^{th} iteration of SNGCA.

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000	° ●000	00000 0000
Petermulation of SDP				

"Semidefinite Programming"-Approach

Some notations: let

- i) $G \in \mathbb{R}^{d \times L}$ be a matrix of averaged gradients of test functions h_{ω} with columns η_l
- ii) $U \in \mathbb{R}^{d \times L}$ a matrix of averaged functions xh_{ω} with columns γ_l .

and let $\widehat{G} \in \mathbb{R}^{d \times L}$ and $\widehat{U} \in \mathbb{R}^{d \times L}$ from the data counterparts respectively s.t.

$$\|G - \widehat{G}\|_2 \le \epsilon$$
 and $\|U - \widehat{U}\|_2 \le \epsilon$.

Then solve the non-convex, non-smooth contrained problem

$$\min_{\Pi} \max_{c} \left\{ \left\| (I - \Pi) \widehat{U} c \right\|_{2}^{2} \right\| \begin{array}{c} 0 \leq \Pi \leq I, \ \operatorname{Tr}[\Pi] = m, \ rank\Pi = m; \\ c \in \mathbb{R}^{L}, \ \|c\|_{1} \leq 1, \ \|\widehat{G} c\|_{2} \leq \delta \end{array} \right\}.$$
(7)

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000	° ⊙●00	00000 0000
Reformulation as SDP				

Recipe of Semidefinite Relaxation

idea: drop constraints to get convexity and than solve.

i) Use the identity:

$$\|(I-\Pi)\widehat{U}c\|_{2}^{2} = \operatorname{Tr}\left[\widehat{U}(I-\Pi)\widehat{U}X\right].$$
(8)

- ii) Linearization: consider the positive semidefinite matrix $X = cc^{T}$ with rankX = 1 as "new variable".
- iii) Set $|X|_1 \stackrel{\text{def}}{=} \sum_{i,j=1}^{L} |X_{ij}|$ and transform $\|\widehat{G}c\|_2 \leq \delta$ into $\operatorname{Tr}[\widehat{G}X\widehat{G}] \leq \delta^2$.
- iv) Drop the non-convex constraints rankX = 1 and $rank\Pi = m$.

Then we arrive at the relaxed semidefinite constrained problem:

$$\min_{P} \max_{X} \left\{ \operatorname{Tr} \left[\widehat{U}(I-P)\widehat{U}X \right] \middle| \begin{array}{c} 0 \leq P \leq I, \ \operatorname{Tr}[P] = m, \\ X \succeq 0, \ |X|_{1} \leq 1, \ \operatorname{Tr}[\widehat{G}X\widehat{G}] \leq \delta^{2} \end{array} \right\}.$$
(9)

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000	° °00●0	00000 0000
Reformulation as SDP				

Bounds for Relaxation Error

Theorem

Suppose that the projector Π^* is μ^* times a convex combination of rank-one matrices $Ucc^T U^T$ where c satisfies the constraints Gc = 0 and $||c||_1 \leq 1$, i.e.

$$\Pi^* \preceq \sum_{k=1}^{\overline{m}} \mu^k U c_k c_k^{\mathsf{T}} U^{\mathsf{T}}.$$
 (10)

Then an optimal solution \widehat{P} of the relaxed problem satisfies

$$\operatorname{Tr}\left[(I-\widehat{P})\Pi^*\right] \leq 4\mu^*\epsilon^2(\lambda_{\min}^{-1}(\Sigma)+1)^2.$$
(11)

Further, if $\widehat{\Pi}$ is the projector onto the subspace spanned by m principal eigenvectors of \widehat{P} , then

$$\|\widehat{\Pi} - \Pi^*\|_2^2 \le \frac{8\mu^*\epsilon^2(\lambda_{\min}^{-1}(\Sigma) + 1)^2}{1 - 4\mu^*\epsilon^2(\lambda_{\min}^{-1}(\Sigma) + 1)^2}$$
(12)

< □ > < 同 >

EU and others

E. Diederichs@FU Berlin

Project A10@Matheon

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000	° °000●	00000 0000
Poformulation of SDP				

How to Include the Constraints

Observe that $\widehat{G}^{T}\widehat{G} = \Gamma \Lambda \Gamma^{T}$ and X are symmetric and positive. Hence:

$$Tr(\widehat{G}^{T}\widehat{G}X) = 0 \quad \Rightarrow \quad X = QZQ^{T}$$
 (13)

where $Z \in S^{L-d}$ and $Q \in S^{L \times (L-d)}$ is a submatrix of columns of Γ corresponding to the vanishing eigenvalues of $\widehat{G}^{T}\widehat{G}$.

Let $V = \hat{G}Q$. Than we get a regularized and hence unconstrained convex reformulation of the relaxed problem:

$$\min_{\Pi,W} \left[\max_{Z \in \mathcal{Z}, Y} \operatorname{Tr}[V^{\mathsf{T}}(I - \Pi_{\widehat{\mathcal{I}}})VZ] + \operatorname{Tr}[W(QZQ^{\mathsf{T}} - Y)] \right]$$
(14)

where $Z \in \mathcal{Z}$ and $\mathcal{Z} := \{Z \in \mathcal{S}_{L-d} \mid Z \succeq 0, Tr(Z) \leq 1\}.$

The latter problem can be solved using a gradient-type method with complexity $\mathcal{O}(d \log d)$ and $\mathcal{O}(\epsilon^{-1})$ iterations (Nesterov 2007).

E. Diederichs@FU Berlin Project A10@Matheon イロン 不同 とくほう イロン

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000		• 0000 0000

Artificial Examples

Non-gaussian Components of Test Densities

Figure: (A) 2d independent Gaussian mixtures, (B) 2d isotropic super-Gaussian, (C) 2d isotropic uniform and (D) dependent 1d Laplacian with additive 1d uniform with N = 1000 respectively.

E. Diederichs@FU Berlin

Project A10@Matheon

FU and others

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach 0 0000	Numerical Exam
Artificial Examples				

One Step Improvement of the Iterative Approach

Figure: Sub-Gaussian density with 2 components in \mathbb{R}^{20}

E. Diederichs@FU Berlin Project A10@Matheon FU and others

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach 0 0000	Numerical Exam
Artificial Examples				

Error Criterion

The closeness of the subspaces ${\cal I}$ and its estimate $\widehat{\cal I}$ can be measured by the error function

$$\mathcal{E}(\widehat{\mathcal{I}},\mathcal{I}) \stackrel{\text{def}}{=} = \frac{1}{m} \sum_{i=1}^{m} \|(I - \Pi) v_i\|^2$$
(15)

A D > A D > A

∃ ▶ ∢

where Π denotes the orthogonal projection onto $\hat{\mathcal{I}}$, $\{v_i\}_{i=1}^m$ is an orthonormal basis of $\hat{\mathcal{I}}$ and I denotes the identity matrix.

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000		00000 0000
Autificial Economica				

Comparison dimension

Figure: Comparison of PP, iterative and non-iterative SNGCA by estimation error for increasing dimensionality .

E. Diederichs@FU Berlin Project A10@Matheon FU and others

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000		00000 0000
And Called Francisco a				

Comparison noise

Figure: Comparison of PP, iterative and non-iterative SNGCA for increasing numerical condition for Σ^{-1} .

E. Diederichs@FU Berlin Project A10@Matheon FU and others

・ロン ・四 と ・ ヨ と ・ ヨ と …

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach	Numerical Exam
	00 00000	00 0000		00000 •000
Real World Examples				

Application to Protein Study

The molecule was simulated using CHARMM with an implicit water environment at 300K. We analyzed a 1is long simulation with 2fs time steps observing the 33 backbone torsion angles.

Figure: most probable conformations of 12-alanine, α -helix and β -sheet

Image: Image:

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach 0 0000	Numerical Exam
Real World Examples				

SNGCA-result of 12-alanine

reduced nongaussian subspace of 12-alanine

E. Diederichs@FU Berlin

FU and others

Project A10@Matheon

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach 0 0000	Numerical Exam
Real World Examples				

1) Structural data analysis based on the non-Gaussian vs. Gaussian distinction is effective and computational not too expansive.

2) Semidefinite relaxation leads to a statistically more sensitive and structural analysis with not too large complexity $\mathcal{O}(JN^2 + d \log d)$.

3) The stochastic reduction of dimensionality works also with stochastic dynamical systems like large biomolecules.

< 17 ▶

∃ >

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach 0 0000	Numerical Exam
Real World Examples				

Summary

1) Structural data analysis based on the non-Gaussian vs. Gaussian distinction is effective and computational not too expansive.

2) Semidefinite relaxation leads to a statistically more sensitive and structural analysis with not too large complexity $O(JN^2 + d \log d)$.

3) The stochastic reduction of dimensionality works also with stochastic dynamical systems like large biomolecules.

< 17 >

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach 0 0000	Numerical Exam
Real World Examples				

Summary

1) Structural data analysis based on the non-Gaussian vs. Gaussian distinction is effective and computational not too expansive.

2) Semidefinite relaxation leads to a statistically more sensitive and structural analysis with not too large complexity $\mathcal{O}(JN^2 + d \log d)$.

3) The stochastic reduction of dimensionality works also with stochastic dynamical systems like large biomolecules.

< 17 >

Conformational Changes of Biomolecules	Semi-parametric framework	Iterative Approach	Non-iterative Approach 0 0000	Numerical Exam
Real World Examples				

Thank you for your attention!

E. Diederichs@FU Berlin Project A10@Matheon FU and others

Image: A matrix and a matrix

< ∃ > < ∃