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The model

• Environment : ω = (ωx, x ∈ Z) i.i.d. random variables in
(0, 1).
P ≡ law of ω. E ≡ expectation under P.

• ω fixed, RWRE : X = (Xn, n ≥ 0) :

Pω (Xn+1 = x+ 1 |Xn = x) = ωx,

Pω (Xn+1 = x− 1 |Xn = x) = 1− ωx.

Pω ≡ law of X in the environment ω : quenched law.

• P ≡ joint law of (ω, (Xn)) : annealed law. E ≡ expectation
under P.
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Transition probabilites

ωx1− ωx

xx− 1 x+ 1−1 0 1

ω01− ω0
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Transience-recurrence criterion

Notations :

ρx :=
1− ωx
ωx

, x ∈ Z.

Theorem (Solomon, 1975)

If E[log ρ0] is defined, (Xn, n ≥ 0) is recurrent iff E[log ρ0] = 0.
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Law of large numbers

Theorem (Solomon, 1975)

There exists v ∈ [−1, 1], which depends only on the environment,
such that, P-a.s.,

Xn

n
−→ v, n→∞,

where v satisfies

v :=


1−E[ρ0]
1+E[ρ0] > 0 if E[ρ0] < 1,
0 if (E[ρ−1

0 ])−1 ≤ 1 ≤ E[ρ0],
E[ρ−1

0 ]−1

E[ρ−1
0 ]+1

< 0 if 1 < (E[ρ−1
0 ])−1.
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The recurrent case : Sinai’s walk

Theorem (Sinai, 1982)

If E[log ρ0] = 0 (and technical conditions), then

σ2

(log n)2
Xn

law−→ b∞ ,

where σ2 := Var[log ρ0] > 0.
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Potential

Potential : V = (V (x), x ∈ Z) :

V (x) :=



x∑
i=1

log
(

1− ωi
ωi

)
if x ≥ 1,

0 if x = 0,

−
0∑

i=x+1

log
(

1− ωi
ωi

)
if x ≤ −1.
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Example of potential

b− b+

c− c+
x

V (x)

0
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Valleys and localization

• Valleys : (a, b, c) such that a < b < c and :

min
a≤x≤c

V (x) = V (b),

max
a≤x≤b

V (x) = V (a),

max
b≤x≤c

V (x) = V (c).

• Height : H = H(a,b,c) := min(V (c)− V (b), V (a)− V (b)).

• Golosov (1984) : Exit time ' eH .
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Valley and localization in the recurrent case
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The sub-ballistic regime

Assumptions

(a) There exists 0 < κ < 1 such that E [ρκ0 ] = 1 (and technical
conditions).

Theorem (Kesten-Kozlov-Spitzer, 1975)

Under (a), we have :

τ(n)
n1/κ

law−→ cκScaκ , n→∞,

Xn

nκ
law−→ c′κ

(
1
Scaκ

)κ
, n→∞,

where Scaκ is a completely asymmetric stable law of index κ.
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The sub-ballistic regime

Proof : Branching process in random environment with
immigration.

No potential !
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Main result : aging phenomenon

Assumptions

(a) There exists 0 < κ < 1 such that E [ρκ0 ] = 1 (and technical
conditions).

Theorem (Enriquez-Sabot-Z., 2007)

Under assumption (a), we have, for all h > 1 and all η > 0,

lim
t→∞

P(|Xth −Xt| ≤ η log t) =
sin(κπ)
π

∫ 1/h

0
yκ−1(1− y)−κ dy.

Remark

Universality of the Bouchaud’s trap model.
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A renewal theorem of Dynkin
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A renewal theorem of Dynkin

• (Yi)i≥1 i.i.d. and heavy tailed : P(Yi ≥ u) ∼ u−α, with
α ∈ (0, 1).

• Renewal process : Sn :=
∑n

i=1 Yi, for n ≥ 0.

• Last renewal epoch before time t defined by

Nt := sup{n ≥ 0 : Sn ≤ t}, t ≥ 0.

• Spent waiting time and residual waiting time :

At := t− SNt , t ≥ 0,
Rt := SNt+1 − t, t ≥ 0.
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A renewal theorem of Dynkin

Theorem (Dynkin)

For all 0 ≤ x1 < x2 ≤ 1, we have

lim
t→∞

P
(
x1 ≤

At
t
≤ x2

)
=

sin(απ)
π

∫ x2

x1

x−α

(1− x)α−1
dx.

For all 0 ≤ x1 < x2, we have

lim
t→∞

P
(
x1 ≤

Rt
t
≤ x2

)
=

sin(απ)
π

∫ x2

x1

dx
xα(1 + x)

.
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The sub-ballistic regime : analysis of the potential
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Assumptions

(a) There exists 0 < κ < 1 such that E [ρκ0 ] = 1 (and technical
conditions).
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Potential

V (x) :=



x∑
i=1

log ρi if x ≥ 1,

0 if x = 0,

−
0∑

i=x+1

log ρi if x ≤ −1.

Remark : Assumption (a) implies E[log ρ0] < 0.
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Potential and valleys

x

V (x)

0 nt := tκ
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Potential and valleys

• Excursions of the potential above its past minimum

e0 := 0,
ei := inf{n > ei−1 : V (n) ≤ V (ei−1)}, i ≥ 1.

• (V (x)− V (ei−1), ei−1 ≤ x ≤ ei)i≥1 are i.i.d.

• Under (a), we have E[e1] <∞.

• Iglehart’s result : P{H > h} ∼ CIe−κh, h→∞.

• Deep valleys : boxes constructed around excursions higher
than ht := log t− log log t.
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Potential and valleys

x

V (x)

b1

c1

b2

c2

bN

cN

0 ent

N = N(t)
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Valleys’ properties

• “Directed” property.

• The time spent between deep valleys is negligible :

τ(dN ) ' τ(b1, d1) + τ(b2, d2) + · · ·+ τ(bN , dN ).

• The valleys are well separated : “i.i.d.” property.
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Occupation time

• Height : Hk := V (ck)− V (bk), for k ≥ 1.

• Exact computation : ∀λ > 0,

Eω

[
e−λτ(bk,dk)

]
≈ 1

1 + λeHkMkMk

,

where

Mk :=
ck∑
i=ak

e−(V (i)−V (bk)),

Mk :=
dk∑
i=bk

eV (i)−V (ck).
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Occupation time

x

V (x)

bk ck

Hk

Mk :=
∑dk

i=bk
eV (i)−V (ck)

Mk :=
∑ck

i=ak
e−(V (i)−V (bk))

Fig.: Mk et Mk.
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Properties

• Occupation time : asymptotically (quenched result)

τ(bk, dk)
law
≈ (MkMkeHk) exp{1}.

• Asymptotic independence between eHk , Mk and Mk :
coupling arguments.

• Iglehart’s result + Mk and Mk “nice” r.v. ⇒ τ(bk, dk) is
heavy tailed under the annealed law.
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Proof

• τ(b1, d1) + τ(b2, d2) + · · ·+ τ(bN , dN ) sum of “i.i.d.”
heavy-tailed random variables.

• Occupation time : Ti := τ(bi, di).

• Time between deep valleys negligible + “directed” property :

{aj ≤ Xt ≤ dj} =

{
j−1∑
i=1

Ti ≤ t <
j∑
i=1

Ti

}
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Proof

• Last visited deep valley : `t := sup{j ≥ 0 : τ(bj) ≤ t}.

• As for renewal processes :

{a`t ≤ Xt, Xth ≤ d`t} =

{
`t−1∑
i=1

Ti ≤ t < th <

`t∑
i=1

Ti

}

• New version of Dynkin’s theorem !

29 / 30



Model and result A renewal theorem The sub-ballistic regime

Proof

• Last visited deep valley : `t := sup{j ≥ 0 : τ(bj) ≤ t}.

• As for renewal processes :

{a`t ≤ Xt, Xth ≤ d`t} =

{
`t−1∑
i=1

Ti ≤ t < th <

`t∑
i=1

Ti

}

• New version of Dynkin’s theorem !

29 / 30



Model and result A renewal theorem The sub-ballistic regime

Proof

• Last visited deep valley : `t := sup{j ≥ 0 : τ(bj) ≤ t}.

• As for renewal processes :

{a`t ≤ Xt, Xth ≤ d`t} =

{
`t−1∑
i=1

Ti ≤ t < th <

`t∑
i=1

Ti

}

• New version of Dynkin’s theorem !

29 / 30



Model and result A renewal theorem The sub-ballistic regime

Proof

• Residual waiting time :{
`t−1∑
i=1

Ti ≤ t < th <

`t∑
i=1

Ti

}
=
{
Rt
t
≥ h− 1

}

• Then, we have, when t→∞,

P(a`t ≤ Xt, Xth ≤ d`t)→
sin(κπ)
π

∫ 1/h

0
yκ−1(1− y)−κ dy.

• Control around the bottom of the last visited deep valley :
arguments of invariant measure for a Markov chain on a
finite state space + geometrical properties of the valleys.
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