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A Drift-Diffusion Model with
Fully Nonlocal State Equation for
Heterogeneous Semiconductor Materials

WIAS–Colloquium, Berlin, April 16th, 2007

1 Stochastic processes “far” from equilibrium

Closed system of interacting particles occupying a bounded spatial
domain Ω.

BUTTA, LEBOWITZ: The free energy of such a system is – in the
macroscopic picture – a density functional of the form

E(n) = Φ∗(n) + Ψ(n). (1)

The short-range interaction energy

Φ∗(n) =
∫

Ω
ϕ∗(n(x)) dx (2)

is a strictly convex functional, and the long-range interaction energy

Ψ(n) =
1
2

∫
Ω

∫
Ω

k(x, y)n(y)n(x) dy dx +
∫

Ω
k0(y)n(y) dy, (3)

is a quadratic functional, where k is a symmetric integral kernel.
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Minimization of the free energy

Minimizing E under the constraint of particle number conservation.
Lagrange functional:

Eζ(n) def= E(n) +
∫

Ω
(n0(x)− n(x))ζ(x) dx

= Φ∗(n) + Ψ(n) +
∫

Ω
(n0(x)− n(x))ζ(x) dx

ζ = v + w Lagrange parameter
v = ∂Φ∗(n) chemical potential
w = ∂Ψ(n) (long-range) interaction potential

Evolution of the density

LEBOWITZ ET AL.: Applying diffusive hydrodynamic scaling to the
microscopic dynamics one obtains in the limit a drift-diffusion-type
transport equation describing the evolution of the density n:

n′ +∇ · j = 0 in (0, t)×Ω, (4a)
j · ν = 0 on (0, t)× ∂Ω, (4b)

n(0) = n0 on Ω. (4c)

Current density:
j = −κ∇ζ (5)

κ is the mobility of the system with only short-range interactions.
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Einstein relation

SPOHN, LEBOWITZ:
The diffusivity µ is given in terms of the free energy density ϕ∗, in
such a way that the Einstein relation holds true:

µ(n) = κ(n) ∂2Φ∗(n), (6)

Hence, the current density j can be written as a sum of a semi-linear
diffusion and a non-linear, non-local drift part:

j = −µ∇n− κ∇w.

2 Drift-diffusion models with local state equations

Thermodynamic design of semiconductor models

VAN ROOSBROECK [1950]: macroscopic model describing drift, dif-
fusion, and reaction processes of charge carriers in a semiconductor

GAJEWSKI, GRÖGER [1989, 1996]: van Roosbroeck’s system has free
energy of type

E(n) = Φ∗(n) + Ψ(n)
as a Lyapunov functional

GLITZKY, HÜNLICH [1997]: thermodynamic approach to more gen-
eral electro-reaction-diffusion systems

ALBINUS, GAJEWSKI, HÜNLICH [1999]: thermodynamic design of
energy models of semiconductor devices
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Van Roosbroeck’s system I

Evolution equation (unipolar case, no reactions)

n′ +∇ · j = 0 in (0, t)×Ω
j · ν = 0 on (0, t)× ∂Ω

n(0) = n0 on Ω

Structure of current and Einstein relation

j = −κ∇ζ, µ(n) = κ(n) ∂2Φ∗(n)

State equation

n(x) =

{
n̄(x) exp(v(x)) Boltzmann statistics

n̄(x) F1/2(v(x)) Fermi–Dirac statistics

n̄ ∈ L∞(Ω; R+) represents a given density of states.

The Fermi integral to the index α > −1 is defined by Fα(s) = 1
Γ(α+1)

∫ ∞
0

ταdτ
1+exp(τ−s)

Chemical potential

The convex functional Φ∗ is the dual of

Φ(v) def=
∫

Ω
n̄(x)ϕ(v(x)) dx

where

ϕ(x) =

{
exp(x) Boltzmann statistics

F3/2(x) Fermi–Dirac statistics
Hence, the state equation can be written as

n = ∂Φ(v)
that means

n(x) = n̄(x)ϕ′(v(x)) x ∈ Ω
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Van Roosbroeck’s system II

Poisson equation

−∇ · (ε∇v0) = p− n in (0, t)×Ω
ν · (ε∇v0) + τv0 = 0 on (0, t)× ∂Ω

ε ∈ L∞(Ω; R+) dielectric permittivity,
1
ε
∈ L∞(Ω; R)

τ ∈ L∞(∂Ω; R+) capacitance of the boundary, ‖τ‖L1(∂Ω;R) > 0

p given doping profile

Interaction potential

The (long-range) interaction potential is given by

w = vc − v0,

where

vc band edge offset,
v0 electrostatic potential.

Correspondingly, the (long-range) interaction energy is

Ψ(n) =
∫

Ω

ε

2
|∇v0|2 dx +

∫
∂Ω

τ

2
|v0|2 dσ +

∫
Ω

nvc dx,

such that indeed,

w = ∂Ψ(n).
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Analysis of drift-diffusion semiconductor models

Weak solutions

GAJEWSKI/GRÖGER 1989-1996
GLITZKY/HÜNLICH 1997
ALBINUS/GAJEWSKI/HÜNLICH 1999

free energy of the system is a convex functional

exponential decay of the free energy along trajectories

energetic estimates

existence and uniqueness of bounded weak solutions of the evolu-
tion system which asymptotically converge to an equilibrium state

In order to obtain uniqueness GAJEWSKI introduced the concept of
E-monotonicity.

Analysis of drift-diffusion semiconductor models

Classical solutions

HCK/NEIDHARDT/REHBERG 2006

existence and uniqueness of local in time classical solutions of the
drift-diffusion system for semiconductors
(rather general reaction terms)

methods for quasi-linear parabolic equations in Lebesgue spaces

GAJEWSKI/SKRYPNIK 2006

global in time (unique) classical solutions
(under restricting conditions on the reaction terms)
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3 The stationary problem with non-local state equations

Density Functional Theory (DFT)

• aims at ground states of a quantum mechanical system

• is precise for systems in equilibrium

• treats many-particle systems with one-particle equations

• identifies the particles in equilibrium, and

• accounts for the interaction of particles by an additional operator
in a one-particle Hamiltonian (the xc-potential)

Fundamental applications of DFT in

• nuclear physics, and physical chemistry

• solid state physics, and in particular semiconductor physics

DFT and Kohn–Sham system

KOHN [1965] (1998 half a Nobel Prize in Chemistry for DFT)

DFT calculations are based on the Kohn–Sham system, and have
been performed for a long time.

Mathematical analysis of Kohn–Sham systems started only in the
1990s: HCK/REHBERG [1997], PRODAN/NORDLANDER [2003].

Solutions of the Kohn–Sham system describe the stationary states of
the evolution system under consideration here.

The Kohn–Sham system is a stationary Schrödinger–Poisson system
with self-consistent effective Kohn–Sham potential.
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Kohn–Sham equations

for a heterogeneous semiconductor material:

− h̄2

2 ∇ ·
(
m−1∇ψ`

)
+ (vc + vxc − v0)ψ` = E`ψ`

−∇ · (ε∇v0) = p− n
n = ∑`∈N f (E` − ζ) |ψ`|2

m position-dependent effective mass tensor
vxc = vxc(n) exchange-correlation potential
ε dielectric permittivity
p given doping profile
ζ = ζ(n) normalizing shift which fixes the number of particles

f describes the distribution of the particles on the energy scale;
in the three-dimensional case f is the Fermi function.

Analysis of the Kohn–Sham system

Without xc-potential:

unique solution depending boundedly Lipschitz continuous on the
reference potential vc in the Schrödinger operator

System is a non-linear Poisson eq. with fully non-local state eqs.

Non-linear Poisson operator is strongly monotone and boundedly
Lipschitz continuous

With xc-potential:

Kohn–Sham system has at least one solution (Schauder)

Sufficient conditions on the xc-potential for unique solution
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4 Von Neumann-type trace functionals

The analysis for the Kohn–Sham system rests upon the following
property:

The quantum mechanical carrier density operator depending on the
potential of the defining Schrödinger operator is anti-monotone and
boundedly Lipschitz continuous.

CAUSSIGNAC, NIER, HCK/REHBERG [1990–1997]

All these results are special cases of a general result on the convexity
and differentiability of von Neumann-type trace functionals.

HCK/NEIDHARDT/REHBERG [2003]

Von Neumann-type trace functionals

Notations

H separable, infinite-dimensional Hilbert space
B space of bounded linear operators on H

B1 subspace of trace class operators
Bs subspace of self-adjoint operators from B

Bs
1 subspace of self-adjoint operators from B1

B+
1 the cone of self-adjoint non-negative trace class operators
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Von Neumann-type trace functionals

Convexity

Proposition (VON NEUMANN [1932], LIEB/PEDERSEN [2002])

If H is a self-adjoint operator with compact resolvent which is semi-
bounded from below, and
G : R → R+ is continuous, decreasing, convex, and such that
G(H + γ) is nuclear for each γ ∈ R,
then the functional

Bs 3 U 7−→ tr
(
G(H + U)

)
is convex.

Von Neumann-type trace functionals

Differentiability

Proposition (BIRMAN AND SOLMYAK [1973])

If H is a self-adjoint operator with compact resolvent which is semi-
bounded from below, and
G : R → R is continuously differentiable, and such that
G′ is bounded, integrable, and Hölder continuous on all (γ, ∞),
then for each W ∈ Bs

1 the function

R 3 s 7−→ G(H + sW) ∈ B1

is continuously differentiable, and

d
ds

tr (G(H + sW))
∣∣
s=t = tr

(
G′(H + tW)W

)
for all t ∈ R.
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Von Neumann-type trace functionals

Gradient

Proposition (HCK/NEIDHARDT/REHBERG [2003])

If H is a self-adjoint operator with compact resolvent which is semi-
bounded from below, and
G : R → R+ is continuously differentiable, decreasing, convex, and
such that G(H + γ) is nuclear for each γ ∈ R,
then the functional

Bs 3 U 7−→ Φ(U) def= tr
(
G(H + U)

)
is Fréchet differentiable, and its gradient

∂Φ : Bs → Bs
1 ⊆ (Bs)∗, ∂Φ(U) = G′(H + U) is monotone.

5 The model with fully non-local state equation

We aim at a drift-diffusion model of semiconductor heterostructures.

Bulk material:

averaging over a fundamental cell of the translational lattice yields

n(x) = n̄ F1/2
(
ζ(x)− vc + v0(x)

)
.

At the interface of different semiconductor materials this averaging
is not justified anymore!

We propose a drift-diffusion model for heterogeneous semiconduc-
tor materials with the non-locally defined particle density from DFT.
This regularizes the discontinuities of the band edge offset vc.
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5.1 The free energy of the system

We assume that the free energy of the system is a density functional
E : (Bs)∗ → R of the following form

E(N) def= Φ∗(N) + Ψ(N) + Λ(N) for N ∈ dom(E),

Φ∗ dual of a von Neumann functional
Ψ a quadratic functional
Λ xc-energy functional

Λ : (Bs)∗ → R is the so-called exchange-correlation energy which
makes good for passing from a multi-particle picture to a one-particle
representation in Density Functional Theory.

Assumption: Λ is Fréchet differentiable on ∂Φ[Bs].

Notations

H separable, infinite-dimensional Hilbert space
B space of bounded linear operators on H

B1 subspace of trace class operators
Bs subspace of self-adjoint operators from B

Bs
1 subspace of self-adjoint operators from B1

B+
1 cone of self-adjoint non-negative trace class operators

H self-adjoint, compact resolvent, semi-bounded from below
f thermodynamic equilibrium distribution function

F(s) def=
∫ ∞

s
f (τ) dτ

Generically, f is the Fermi function f (s) = 1
1+exp(s).
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The generalized von Neumann functional

If F(H + γ) ∈ B1 for each γ ∈ R, then the von Neumann functional
Φ : Bs → R is well-defined by

Φ(V) def= tr
(

N̄F(H −V)
)

for V ∈ Bs. (7)

N̄ is fixed such that N̄F(H −V) becomes a statistical operator (up to
normalization).

Looking for minimal assumptions on F and H such that. . .

The von Neumann functional Φ is convex and Fréchet differentiable.

∂Φ : Bs → Bs
1 ⊂ (Bs)∗ is given by

∂Φ(V) = −N̄F′(H −V) = N̄ f (H −V) for V ∈ Bs (8)

∂Φ is monotone, takes its values in B+
1 — essentially is a statistical

operator, namely the particle density N = ∂Φ(V).

The dual of the von Neumann functional

Φ∗(N) def= sup
U∈Bs

(
〈N, U〉B−Φ(U)

)
for N ∈ (Bs)∗. (9)

Φ and Φ∗ are convex and Fréchet differentiable.

∂Φ∗ : (Bs)∗ → Bs is given by

∂Φ∗ = ∂Φ−1 on ∂Φ[Bs] ⊂ B+
1 ⊂ (Bs)∗.

Moreover,
Φ∗(N) + Φ(V) = 〈N, V〉B = tr(NV)

where
N = ∂Φ(V), V ∈ Bs
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The 2nd derivative of the von Neumann functional

If the function F is twice continuously differentiable,
then the operator function

Bs 3 V 7→ N̄F(H −V) ∈ B1

is twice Fréchet differentiable (HANSEN [2006]).

We aim at the representation

∂2Φ(V) = N̄F′′(H −V) ∈ B+
1 for all V ∈ Bs (10)

Quadratic interaction energy

Ψ : (Bs)∗ → R

Ψ(N) def= 1
2〈N − P, K(N − P)〉B for N ∈ dom(K) (11)

P ∈ dom(K) is given

K : (Bs)∗ → Bs is a bounded linear operator on the linear subset
dom(K) ⊂ (Bs)∗ such that

〈N, K(M)〉B = 〈M, K(N)〉B for all M, N ∈ dom(K).

Ψ is Fréchet differentiable on dom(K):

∂Ψ(N) = K(N − P) for all N ∈ dom(K). (12)
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Minimization of the free energy

The free energy of the system is the density functional E : (Bs)∗ → R

E(N) def= Φ∗(N) + Ψ(N) + Λ(N) for N ∈ dom(E),
dom(E) = ∂Φ[Bs] ∩ dom(K).

(13)

In the sense of Density Functional Theory we are looking for the
minima of the free energy E subject to the constraint

tr(N − N0) = 0, where N0 ∈ B+
1 ⊂ (Bs)∗ is fixed. (14)

Lagrange multiplier Z ∈ Bs; Lagrange functional EZ : (Bs)∗ → R

EZ(N) def= E(N) + 〈N0 − N, Z〉B
= E(N) + tr

(
(N0 − N)Z

)
for N ∈ dom(E).

(15)

The Euler-Lagrange equation ∂EZ(N) = 0 yields

Z = ∂E(N) = ∂Φ∗(N) + ∂Ψ(N) + ∂Λ(N). (16)

Real-space representation of QM

We illustrate the setting in the real-space representation of quantum
mechanics:

H = L2(Ω; C)
Ω ⊂ Rd bounded Lipschitz domain, d ≤ 3

H = − h̄2

2 ∇ ·m−1∇+ vc Schrödinger operator
L∞(Ω; R) space of potentials

Each element u from the space L∞(Ω; C) induces a bounded multi-
plication operator on L2(Ω; C).

In this sense L∞(Ω; R) embeds into Bs.
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Lemma:

(HCK, NEIDHARDT, REHBERG 2007)
Let (Y, S, µ) be a σ–finite measure space, and let

π : L1(µ)∗ ∼= L∞(µ) −→ B

be the natural embedding. Then the dual mapping

π∗ : B∗ −→ L∞(µ)∗ ∼= L1(µ)∗∗

has the following properties:

1. the restriction of π∗ to the sub-space B1 ⊂ B∗ maps onto L1(µ)

2. the restriction of π∗ to the sub-space Bs
1 ⊂ (Bs)∗ maps onto L1

R
(µ)

3. the restriction of π∗ to the self-adjoint, non-negative trace-class
operators maps onto the real-valued, non-negative functions from
L1(µ)

Density and chemical potential

Let N̄ = π(n̄) be given by a positive function n̄ ∈ L∞(Ω; R), and

n def= π∗ ◦ ∂Φ ◦π(v) = π∗
(
− N̄F′(H−π(v))

)
= n̄ π∗

(
f (H−π(v))

)
.

If v is a chemical potential from the space L∞(Ω; R) then, n belongs
to the non-negative cone of L1(Ω; R).

Fenchel–Moreau identity:

Φ∗(N) + Φ(V) =
∫

Ω
nv dx

n = π∗(N), N = ∂Φ(V), V = π(v), v ∈ L∞(Ω; R).

κ0 : L∞(Ω; R) → L∞(Ω; R)∗

κ0(v) def= π∗ ◦ ∂2Φ ◦ π(v) = n̄ π∗
(

F′′(H − π(v))
)
,

takes its values in the non-negative cone of L1(Ω; R) [L∞(Ω; R)].
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Quadratic interaction energy

K def= π ◦ A ◦ π∗ with the solution operator

A : L∞(Ω; R) → H1(Ω; R) ∩ L∞(Ω; R)

of the Poisson equation∫
Ω

ε∇v0 · ∇ψ dx +
∫

∂Ω
τv0ψ dσ =

∫
Ω

$ψ dx for all ψ ∈ H1(Ω; R),

where v0 = A($).

A is bounded and symmetric, and these properties pass over to K,
where

dom(K) =
{

N ∈ (Bs)∗ : π∗(N) ∈ L∞(Ω; R)
}

.

p ∈ L∞(Ω; R) fixed background charge density in the volume, then
P = π(p).

Electrostatic interaction energy and potential

Electrostatic interaction energy:

Ψ(N) =
∫

Ω

ε

2
|∇v0|2 dx +

∫
∂Ω

τ

2
|v0|2 dσ

with v0 = A(p− π∗(N)) ∈ H1(Ω; R), N ∈ dom(K).

Electrostatic potential: v0 = A(p− π∗(N)) ∈ L∞(Ω; R)

∂Ψ(N) = π
(
− A(p− π∗(N))

)
= π(−v0), N ∈ dom(K).

Exchange-correlation energy and potential

For each N ∈ ∂Φ[Bs] ⊂ B+
1 there is a vxc ∈ L∞(Ω; R) with

∂Λ(N) = π(vxc).
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Electrochemical potential and current

In the real-space representation of quantum mechanics the Lagrange
parameter (16) can be represented by an electrochemical potential ζ:

Z = π(ζ), ζ = v− v0 + vxc. (17)

Thermodynamic principles: The driving force to equilibrium is the
antigradient of the electrochemical potential ζ.

j = −κ∇ζ (18)

The mobility κ can be modeled by the Einstein relation

κ(v) = µκ0(v), µ ∈ L∞(Ω; R), µ ≥ µ0 > 0, (19)

with a diffusivity µ, SPOHN, LEBOWITZ.

5.2 The evolution system

Analogous to the (unipolar) van Roosbroeck system the closed sys-
tem is described by the following initial-boundary value problem:

n′−∇ · (κ∇ζ) = 0 in (0, t)×Ω, (20a)
ν · (κ∇ζ) = 0 on (0, t)× ∂Ω, (20b)

n(0) = n0 on Ω, (20c)
−∇ · (ε∇v0) = p− n in (0, t)×Ω, (20d)

ν · (ε∇v0) + τv0 = 0 on (0, t)× ∂Ω, (20e)

supplemented by the non-local state equation

n = n̄ π∗
(

f (H − π(v))
)

and the Einstein relation

κ(v) = µκ0(v) = µn̄ π∗
(

F′′(H − π(v))
)
.
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Solutions of the evolution system

We expect solutions from the class:

n ∈ C
(
[0, t]; L∞(Ω; R)

)
n′ ∈ L2((0, t); H1(Ω; R)∗

)
ζ ∈ L2((0, t); H1(Ω; R)

)
∩ C

(
[0, t]; L∞(Ω; R)

)
v0 ∈ C

(
[0, t]; H1(Ω; R)

)
∩ C

(
[0, t]; L∞(Ω; R)

)
Conservation of the number of particles along trajectories

Let t 7→ N(t) be a trajectory in B+
1 such that π∗(N(t)) = n(t) for

a solution (n, ζ, v0) of the evolution system. (20a) and (20b) yield∫
Ω n(t, x) dx =

∫
Ω n0(x) dx for t ∈ R+.

Decay of the free energy along trajectories

Let t 7→ N(t) be a trajectory in B+
1 such that π∗(N(t)) = n(t) for a

solution (n, ζ, v0) of the evolution system. The chain rule yields

E(N(t))− E(N0) =
∫ t

0
tr

(
N′(s) ∂E(N(s))

)
ds

=
∫ t

0
〈n′(s), ζ(s)〉H1(Ω) ds,

and employing (20a) and (20b) gives

E(N(t))− E(N0) = −
∫ t

0

∫
Ω

κ |∇ζ(s)|2 dx ds ≤ 0 for t ∈ R+,

that means, the free energy decays along trajectories.

H.-Chr. Kaiser WIAS-Colloquium, Berlin, April 16, 2007

DRAFT 19 DRAFT



Links

Stochastic processes “far” from equilibrium:
LEBOWITZ, SPOHN, VARADHAN,. . .

Thermodynamic design of DD models of semiconductor devices:
ALBINUS, GAJEWSKI, GRÖGER, HÜNLICH

Phase separation processes:
GAJEWSKI, GÄRTNER, GRIEPENTROG, ZACHARIAS

Quantum corrected drift-diffusion models:
ARNOLD, BEN ABDALLAH, DEGOND, JÜNGEL, MÉHATS, VOGL,...

Time-dependent Density Functional Theory: GROSS, MARQUES,. . .

Reaction-diffusion equations for electrically charged species:
GAJEWSKI, GRÖGER; GLITZKY, HÜNLICH; GAJEWSKI, SKRYPNIK

Schrödinger–Poisson systems: NIER, HCK, REHBERG,. . .

Von Neumann trace functionals:
LIEB, HANSEN, HCK, NEIDHARDT, REHBERG

Nonsmooth elliptic and parabolic problems:
ELSCHNER, HCK, KNEES, MAZ’YA, REHBERG, SCHMIDT,. . .

. . . in particular in Sobolev–Morrey spaces: GRIEPENTROG, RECKE

Doubly non-linear evolution equations: MIELKE, OTTO, SAVARÉ,. . .
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