Computational Modeling of Semiconductor Nanostructures for Optoelectronics

Bernd Witzigmann bernd.witzigmann@uni-kassel.de

1

U N I K A S S E L V E R S I T 'A' T

Contents

- CEP Introduction
- Nanowires
- Photovoltaics
- Lighting
- Conclusion

Acknowledgements

- CEP Group University of Kassel
 - Z. Andreev, M. Deppner, F. Roemer, S. Yu

COE Group ETH Zurich
J. Kupec, S. Steiger, R. Veprek

Computational Electronics and Photonics Group

Semiconductor Laser

Research:

- Multi-Scale, Multi-Physics Computational Models for Design and Analysis of Electronic
- Research on Novel EP Concepts

Nanostructures for Optoelectronics

- Trends:
 - Nanowires
 - Nanoparticles
 - Nanostructured Materials
- Applications
 - Emitters
 - Detectors
- Features:
 - Quantization of Carriers
 - Optical Metamaterials
 - Strain Engineering

Reithmaier et al., Nature, 2004

Witzigmann et al. JCSc., 2008

Nanowires

Nanowires

- Novel Material Combinations
 - Substrates
 - Device Hetero-Interfaces

InP Nanowires on Si, University Lund

7

Kishino et al.

Photovoltaics

Funding: FP 7 AMON-RA: 'Architectures, Materials, and One-dimensional Nanowires for Photovoltaics - Research and Application'

Solar Spectrum

Solar Energy on Earth Surface:90'000 TWCurrent Global Energy Consumption:16 TW

High Efficiency Cells

- Idea: stack p-n junctions connected by tunnel-junctions
 - Bandgaps match solar spectrum
 - Theory: single junction 30%, infinite junctions 68%

Photovoltaics

- Example: ideal dual-junction device • => Efficiencies up to 55% achievable!
- => Nanowires can potentially have high strain!

Nanowire Modeling: Electromagnetics

- However: Can a nanowire device capture as much light as a bulk semiconductor?
- Theoretical Investigation of the Optical Properties
 - Coupling of optical power flux into the Nanowire array
 - Wave Propagation in the Device

LUMI III – FEM Electromagnetics

Homogeneous/Inh. Wave Equation: $\nabla \times (\overline{\mu}_r^{-1} \nabla \times \mathbf{E}) - k^2 \overline{\epsilon}_r \mathbf{E} = -j Z_0 k \mathbf{J}$

- 2-/3- Dimensional
- Complex, anisotropic refractive index
- Boundaries: Neumann/Dirichlet/PML
- Numerics:
- Nedelec Elements, first/second order
- Linear Solvers: Jacobi-Davidson, direct, iterative
- Postprocessing:
- Green's Functions
- Power flux
- Iterative

laser simulator

Dec-1-09

Structure Geometry

Geometry: infinite periodic array of cylindrical nanowires

Illustration of the unit cell (left) and quarter unit cell (right), all calculations were performed on the quarter unit cell.

Definition: Relative Power Absorption

Two mechanisms decreasing relative power absorption

• Reflection of power at top interface: due to the dielectric interface, reflection occurs.

15

• Transmission through the nanowire array into the substrate

Total Relative Power Absorption

Questions arising from 3D EM

- What is the cause of the local maxima of the total relative power absorption?
- Which fraction is lost due to reflection and which due to transmission?
- What is the effect of increased nanowire length (resonance effects along the nanowire)?
- How can the total relative power absorption be increased?
- Solution: Modal analysis of the nanowire solar cell.

From 3D to 2D Modal Analysis

Idea

- Light propagates along the nanowires in the discrete modes of an infinite waveguide, no cross-talk between modes, power in each mode dissipates according to Beer-Lambert law
- In-coupling into modes is determined by the modal field distribution and the modal effective refractive index

2D Modal Analysis

Comparison 3D and 2D Waveguide

Dispersion Relation of the NW Array

2D Waveguide and 3D EM Results

- 2D waveguide and 3D simulations are in good agreement even at moderate nanowire lengths.
- Local excursions of the total relative absorption are caused by transmission through the nanowire array, not by reflection.
- The reflectivity of the entire structure is very low due to the presence of a mode with n_{eff} approx. 1.
- Effect of increasing h₀ can be calculated using the Beer-Lambert law.
- Power absorption can be increased by improving coupling into lossy modes.
- The 2D modal analysis is far less computationally demanding allowing sweep over wide parameter space.

Efficiency: Single-Junction NW Array Solar Cell

- Nanowire solar cells can reach efficiency similar to ideal thin film devices
- The presence of a non-active waveguide does improve absorption however only at a low absolute level

Summary

- 3D simulations related to 2D waveguide simulations show:
 - Structure has antireflective properties due to its dispersion characteristic.
 - The Beer-Lambert law is applicable predicting exponential power decay.
- The effect of the waveguiding oxide is limited
- Spatially and spectrally resolved detailed balance calculation illustrates:
 - Power absorption is higher than incident power weighted with area fill-factor due to micro-concentration.

Nanowires for Solid State Lighting

Funding: FP 7 SMASH: 'Smart Nanostructured Semiconductors for Energy-Saving Light Solutions'

Solid State Lighting: Motivation

- Energy benefits of Solid State Lighting
 - 22 % of electricity used for lighting
 - LED-based lighting can be 20x more efficient than incandescent and 5x more efficient than fluorescent lighting

LED: Luminous Source Efficiency

White LEDs: GaN Material System

- InGaN LED / LD over entire visible spectra (trichromatic sources)
- High efficiency green emitters
- Cost efficient

GaN Material System

Technology

- InGaN allows LED / LD over entire visible spectra
- Violett, blue and green devices exist; red emission?
- High indium concentration

reduces quantum efficiency

Science

- Variety of coupled physical effects:
 - strain (+ relaxation, defects)
 - piezo-electric fields
 - quantum confined stark effect
 - screening
- Inhomogenities (Immiscibility of InN in GaN), Dot-like states

GaN/InGaN thin films

Biaxial Strain

- InGaN on GaN: compressive strain in InGaN layer
- No in-plane relaxation due to infinite extension.

Bulk InGaN Band Gap

• increasing the indium content: $E_g(GaN) - \Delta E(In x) + \Delta E(Strain)$

Nanocolumns [1]

Nanocolumns

- Finite lateral extension allows inplane relaxation
- GaN nanocolumns grown using

rf-MBE on Si; low dislocation dens.

- InGaN quantum disks as active region, emits at 500-700 nm.
- Small blue shifts suggest low internal field (= small strains)

[1] K. Kishino et al., Proc. Of SPIE Vol. 6473, 64730T (2007)

Modeling

Simulation Details

- Tool: tdkp/AQUA [2]
- Continuum-mechanics: FEM
- Displacement- / strain field from hexagonal strain equation
- Piezo-electric fields: surface

charges at element faces

- Poisson's equation: Nanocolumn is surrounded by air.
- Material parameters from [3]

[2] R.G. Veprek, S.Steiger and B.Witzigmann, Journal of Computational Electronics, in press (2008))[3] I. Vurgaftman and J.R. Meyer, in J. Piprek, Nitride Semiconductor Devices (Wiley 2007)

University of Kassel - Computational Electronics and Photonics

tdkp/AQUA

Luminescence: tdkp

- 1D-3D strain calculation using continuum mechanics
- 1D-3D calculation of built-in fields from spont. and piezoelectric polarization
- 0D-3D Schrödinger solver
 - 4-, 6- or 8-band **kp** model
 - Zincblende, wurtzite
 - Including strain
- 0D-3D gain, spont. Emission
 - from n,p or E_{Fn}, E_{Fp}
 - using free-carrier or screened HF

University of Kassel - Computational Electronics and Photonics

Transport: AQUA

- 1D-3D drift-diffusion
- Partitioning of carriers into bound / unbound populations
- Bound carrier description:
 - Quantized directions:
 Full coherence → wave functions, *E_{nk}*
 - Remaining directions: No coherence → DD transport
- Recombination:
 - Nonradiative (SRH, Auger)
 - Radiative: spatially and spectrally resolved spont. emission
- Coupling of populations:
 - Capture
 - Electrostatic potential

Strain Distribution In_{0.4}GaN 3nm QW

Hydrostatic strain (trace E) [%] Hydrostatic Strain 0.0 • Bandgap change (first approx.): $E_g(\boldsymbol{\varepsilon}) = E_g + a_g \operatorname{Tr}(\boldsymbol{\varepsilon})$ -0.02 - BA-quantum-well • Strain potential InN/GaN: a_q Nanowire r = 0 nmNanowire r = 20 nm-0.04 between - 9.9 and - 4.2 [eV] -0.06 0.07 0.08 0.09 2.7E-02 z-axis [um] 1.1E-02 Hydrostatic tr(E) -5.3E-03 0.05 Exx Eyy -2.2E-02 Ezz -3.8E-02 0.025 strain [%] -5.4E-02 -0.025-0.05 0.02 -0.03 -0.02 -0.010 0.01 0.03 disk-radius r [um] University of Kassel - Computational Electronics and Photonics 36 Dec-1-09

Bulk Band Gap and Band Edge

Note: no quantization or Piezoelectric effects included

37

Impact of Strain and Piezoelectricity

Strained Band Edges

Piezoelectric Potential

University of Kassel - Computational Electronics and Photonics

Piezoelectric Potential

Figure 5.12: Piezoelectric potential (energetic) in the well. This energetic potential is added to the strained bandedges, leading to the shapes in figure 5.14.

Total Potential

Strain and Piezoelectricity

- Conduction Band: Strain effect
- Valence Band: Piezoelectric

3D Electron-Hole Wavefunctions

Optical Transition Strength

Strong Transitions occur mainly for states close to the nanocolumn surface

Output Power and Spectrum

• Comparison of Thin film ('1D') and Nanowire ('3D') case

47

• Nanowire shows green/yellow emission (not red...)

Analysis

- Emission mainly from nanowire surface
- Emission energy shift from piezo screening and coulomb renormalization

Open questions

- Indium distribution in Disk
- Wire Surface: Topology and Models
- Nonlinear Piezo effects
- Root cause for red emission

Conclusion

- Nanostructures (still) offer tremendous possibilities for Optoelectronics
- Physics-based Modeling is paramount for Analysis and Design
- Multi-Scale, Multi-Physics Models with various Degrees of Coupling

Thank you for your Attention!

