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Modeling of a bulk precipitation by pop. bal. sys.

1 Modeling of a bulk precipitation by a population balance
system

• calcium carbonate precipitation

• chemical reaction in a flow

CaCl2 + Na2CO3 → CaCO3 ↓ +2NaCl

• main feature: precipitation starts if local concentration of CaCO3 exceeds
saturation concentration

• chemical mechanisms:
◦ nucleation of particles
◦ growth of particles

• reactive flows with particles

• particle size distribution (PSD) is of interest, not the behavior of individual
particles

• modeling with population balance systems
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Modeling of a bulk precipitation by pop. bal. sys.

1 Momentum balance of the continuous phase

• momentum balance of the Navier–Stokes equations

∂t(% vm) + ∂rk

(
% vkvm + πmk

)
=

∫
Ωx

Jv
im(φ, v)fidVx̃ + % gm

◦ % – density, v – velocity, π – stress tensor
◦ accumulation
◦ convection, diffusion
◦ exchange with the disperse phase
◦ body forces

• in applications: flows very often turbulent
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Modeling of a bulk precipitation by pop. bal. sys.

1 Mass and energy balances of the continuous phase

• system of convection–diffusion–reaction equations

∂t(% φl) + ∂rk

(
% vkφl + jφ

lk

)
=

∫
Ωx

Jφ
il(φ, v)fidVx̃ + σl(φ)

◦ φl – concentrations
◦ accumulation
◦ convection, diffusion
◦ exchange with disperse phase
◦ chemical reactions

• convection–dominant

• reaction–dominant
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Modeling of a bulk precipitation by pop. bal. sys.

1 Population balances of the disperse phase

• disperse – distribute more or less evenly throughout a medium

• system of convection–diffusion equations

∂tfi + ∂xj

(
Gij(φ, v)fi

)
+ ∂rk

(
vkfi + jf

ik

)
=

∫
Ωx

hi,br(f, φ, v)dVx̃

+

∫
Ωx

hi,agg(f, φ, v)dVx̃

◦ accumulation
◦ growth
◦ convection, diffusion

◦ breakage
◦ agglomeration

• PSDs depend on time, space and properties of the particles (internal
coordinates)

equations are defined in a higher dimensional domain
than the other equations

• convection–dominant, often even no diffusion

• global integral kernels on right hand side
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Modeling of a bulk precipitation by pop. bal. sys.

1 Challenges

• simulation of reaction– and convection–dominated equations with the
goal to obtain solutions with sharp layers and without spurious oscillations

• simulation of turbulent flows

• coupling of equations defined in domains with different dimension
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Finite element methods for convection–dominated
equations

2 Finite element methods for convection–dominated
equations

• comparison of ≈ 20 stabilized finite element methods, J., Schmeyer
(2008, 2009)

• talk by its own

• FEM–FCT schemes (Kuzmin (2005,2009)) clearly the best methods

• linear FEM–FCT scheme (Kuzmin (2009)) has good ratio of accuracy and
costs

=⇒ method for population balance systems
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Incompressible turbulent flows

3 Incompressible turbulent flows

• Navier–Stokes equations: fundamental equations of fluid dynamics

• Claude Louis Marie Henri Navier (1785 – 1836), George Gabriel Stokes
(1819 – 1903)
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Incompressible turbulent flows

3 The incompressible Navier–Stokes equations

• conservation laws
◦ conservation of linear momentum
◦ conservation of mass

ut − 2Re−1∇ · D(u) +∇ · (uuT ) +∇p = f in (0, T ]× Ω
∇ · u = 0 in [0, T ]× Ω

u(0,x) = u0 in Ω
+ boundary conditions

• given:

◦ Ω ⊂ Rd, d ∈ {2, 3}:
domain

◦ T : final time
◦ u0: initial velocity
◦ boundary conditions

• to compute:

◦ velocity u, where

D(u) =
∇u +∇uT

2
,

is the velocity deformation tensor
◦ pressure p

• parameter: Reynolds number Re
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Incompressible turbulent flows

3 The incompressible Navier–Stokes equations

• Reynolds number

Re =
LU

ν

◦ L [m] – characteristic length scale (diameter of a channel, diameter
of a body in the flow)

◦ U [ms−1] – characteristic velocity scale (inflow velocity)
◦ ν [m2s−1] – kinematic viscosity (water: ν = 10−6 m2s−1)

• rough classification of flows:

◦ Re small: steady–state flow field (if data do not depend on time)
◦ Re larger: laminar time–dependent flow field
◦ Re very large: turbulent flows

• There is no exact definition of what is a turbulent flow !
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Incompressible turbulent flows

3 Characteristics of turbulent flows

• posses flow structures of very different size
◦ hurricane Katrina (2005)

◦ some large eddies (scales), many very small eddies (scales)
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Incompressible turbulent flows

3 Characteristics of turbulent flows

• Richardson energy cascade: energy is transported in the mean from
large to smaller eddies

◦ start of cascade: kinetic energy intro-
duced into flow by productive mecha-
nisms at largest scale

◦ inner cascade: transmitting energy to
smaller and smaller scales by pro-
cesses not depending on molecular
viscosity

◦ end of cascade: molecular viscosity
enforcing dissipation of kinetic energy
at smallest scales

• smallest scales important for physics of the flow
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Incompressible turbulent flows

3 Characteristics of turbulent flows

• Kolmogorov (1941): energy is dissipated from eddies of size (Kolmogorov
scale)

λ ∼ Re−3/4

Kolmogorov during a visit at the Akademie der Wissenschaften der DDR, mid of
1950-ies
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Incompressible turbulent flows

3 Impact on numerical simulations

• Galerkin method aims to simulate all persisting eddies, Direct Numerical
Simulation (DNS)

• number of degrees of freedom ∼ Re9/4

◦ Ω = (0, 1)3 =⇒ L = 1
◦ approx 107 cubic mesh cells (≈ 2153)
◦ low order method (mesh width ≈ resolution of discretization)
◦ =⇒ λ ≈ 1/215
◦ =⇒ Re ≈ 1290

• applications: Reynolds numbers larger by orders of magnitude

Direct Numerical Simulation not feasible !

• only resolved scales can be simulated
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Incompressible turbulent flows

3 The Kolmogorov energy spectrum

• energy of scales in wave number space (Fourier space)

• logarithmic axes

• resolved scales

◦ large scales
◦ resolved small scales

• unresolved scales, subgrid scales

• k – wave number

• E(k) – turbulent kinetic energy of modes with wave number k

• k−5/3 – law of energy spectrum: E(k) ∼ ε2/3k−5/3
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Incompressible turbulent flows

3 Summary

• DNS impossible

• (very) small scales important, have to be taken into account

• 3d simulations necessary

• literature
◦ P.A. Davidson, Turbulence, Oxford University Press, 2004
◦ U. Frisch, Turbulence, Cambridge University Press, 1995
◦ S.B. Pope, Turbulent Flows, Cambridge University Press, 2000

Impact on numerical simulations

• only large scales of a turbulent flows possible to simulate, two approaches
◦ Large Eddy Simulation (LES)
◦ Variational Multiscale (VMS) methods

• impact of the small scales has to be modeled
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A finite–element projection–based VMS method

4 A finite–element projection–based VMS method

• What is large ?

• (traditional) Large Eddy Simulation (LES): large flow structures defined by
an average in space

◦ two scale decomposition of scales:
− large, resolved scales
− small, unresolved, subgrid scales

◦ based on strong formulation of equation
◦ commutation errors
◦ boundary conditions for large scales
◦ references: Sagaut (2006), Berselli, Iliescu, Layton (2006), J. (2004)
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A finite–element projection–based VMS method

4 A finite–element projection–based VMS method

• Variational Multiscale (VMS) methods: large flow structures defined by
projections

◦ based on ideas of Hughes (1995), Guermond (1999)
◦ often three scale decomposition of scales:

− resolved large scales
− resolved small scales
− small, unresolved, subgrid scales

◦ based on variational formulation of equation
◦ variety of realizations can be found in the literature
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A finite–element projection–based VMS method

4 A finite–element projection–based VMS method

• J., Kaya (2005), based on ideas from Layton (2002)

• (V h, Qh) – conform velocity–pressure finite element spaces fulfilling the
inf–sup condition for all resolved scales

• LH – finite dimensional space of symmetric tensor–valued functions in
L2(Ω)d×d (large scale space)

• find uh : [0, T ] → V h, ph : (0, T ] → Qh, GH : [0, T ] → LH :

(uh
t ,vh) + (2Re−1D(uh), D(vh)) + ((uh · ∇)uh,vh)

−(ph,∇ · vh) + (νT (D(uh)−GH), D(vh)) = (f ,vh) ∀ vh ∈ V h

(qh,∇ · uh) = 0 ∀ qh ∈ Qh

(D(uh)−GH , LH) = 0 ∀ LH ∈ LH

νT (t,x) ≥ 0 – turbulent viscosity, turbulence model
GH = PLH D(uh) – L2–projection

• nonlinear (in the viscosity) version of local projection stabilization (LPS)
schemes for stabilizing convection–dominated equations
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A finite–element projection–based VMS method

4 Properties

• three scale decomposition:

◦ (resolved) large scales
◦ resolved small scales
◦ unresolved small scales

• turbulence model acts directly only on the resolved small scales
modeling the influence of unresolved small scales

• indirect influence onto large scales by coupling of resolved small and
large scales

• parameters of the VMS method

◦ LH

◦ νT (Smagorinsky–type models)

• finite element error analysis: J., Kaya (2008); J., Kaya, Kindl (2008)

• similar approach with finite volume methods by Gravemeier (2006)
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A finite–element projection–based VMS method

4 How to choose the large scale space LH ?

• standard bases for velocity–pressure finite element spaces

• here: LH defined on the same grid:

LH = span


 lHj 0 0

0 0 0
0 0 0

 ,
1

2

 0 lHj 0
lHj 0 0
0 0 0

,
1

2

 0 0 lHj
0 0 0
lHj 0 0

,

 0 0 0
0 lHj 0
0 0 0

,
1

2

 0 0 0
0 0 lHj
0 lHj 0

,

 0 0 0
0 0 0
0 0 lHj


j = 1, . . . , nL

• two–level method (for convection–diffusion equations), J., Kaya, Layton
(2006)
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A finite–element projection–based VMS method

4 How to choose the large scale space LH ?

• coupled system

A11 A12 A13 BT
1 G̃11 G̃12 G̃13 0 0 0

A21 A22 A23 BT
2 0 G̃22 0 G̃24 G̃25 0

A31 A32 A33 BT
3 0 0 G̃33 0 G̃35 G̃36

B1 B2 B3 0 0 0 0 0 0 0
G11 0 0 0 M 0 0 0 0 0
G21 G22 0 0 0 M

2
0 0 0 0

G31 0 G33 0 0 0 M
2

0 0 0
0 G42 0 0 0 0 0 M 0 0
0 G52 G53 0 0 0 0 0 M

2
0

0 0 G63 0 0 0 0 0 0 M





uh
1

uh
2

uh
3

ph

gH
11

gH
12

gH
13

gH
22

gH
23

gH
33


=



fh
1

fh
2

fh
3

0
0
0
0
0
0
0


• 7 additional matrices
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A finite–element projection–based VMS method

4 How to choose the large scale space LH ?

• condensation
Ã11 Ã12 Ã13 BT

1

Ã21 Ã22 Ã23 BT
2

Ã31 Ã32 Ã33 BT
3

B1 B2 B3 0




uh
1

uh
2

uh
3

ph

 =


fh
1

fh
2

fh
3

0


Ã11 = A11 − G̃11M

−1G11 −
1

2
G̃24M

−1G42 −
1

2
G̃36M

−1G63

...

Ã33 = A33 − G̃36M
−1G63 −

1

2
G̃11M

−1G11 −
1

2
G̃24M

−1G42

• goal: sparsity pattern of Ãαβ same like Aαβ
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A finite–element projection–based VMS method

4 How to choose the large scale space LH ?

• conditions on LH :
◦ support of each basis function of LH only one mesh cell
◦ basis of LH is L2–orthogonal

=⇒ discontinuous finite element spaces with bases of piecewise
Legendre polynomials

• simulations found in the literature: J., Kaya (2005), J., Roland (2007), J.,
Kindl (2008)
◦ LH(K) = P0(K) for all mesh cells K
◦ LH(K) = P disc

1 (K) for all mesh cells K

• goal: method should determine local coarse space LH(K) a posteriori
such that

◦ LH(K) is a small space where flow is strongly turbulent
⇐⇒ turbulence model has large influence

◦ LH(K) is a large space where flow is less turbulent
⇐⇒ turbulence model has little influence
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A finite–element projection–based VMS method

4 Adaptive large scale space

• assumption: local turbulence intensity reflected by size of local resolved
small scales
◦ size of resolved small scales large =⇒ many unresolved scales can

be expected
◦ size of resolved small scales small =⇒ little unresolved scales can

be expected

• compute the deformation tensor of the large scales GH

◦ computation is not necessary for static LH

◦ additional matrices to assemble in comparison to static LH

• define indicator of the size of the resolved small scales in mesh cell K

ηK =
‖GH − D(uh)‖L2(K)

‖1‖L2(K)
=
‖GH − D(uh)‖L2(K)

|K|1/2
, K ∈ T h

◦ size of the resolved small scales does not depend on size of mesh
cell

◦ size of the mesh cell scales out
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A finite–element projection–based VMS method

4 Adaptive large scale space

• compare ηK to some reference value

◦ similar to a posteriori error estimation and mesh refinement

• reference values

◦ mean value at current time η :=
1

no. of cells

∑
K∈T h

ηK

◦ time average of mean values ηt :=
1

no. of time steps

∑
time steps

η

◦ linear combination ηt/2 :=
η + ηt

2
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A finite–element projection–based VMS method

4 Adaptive large scale space

• local spaces (V h = Q2 or V h = P bubble
2 )

◦ LH(K) = 0 = P00(K) turbulence model influences locally all re-
solved scales

◦ LH(K) = P0(K)
◦ LH(K) = P1(K)
◦ LH(K) = P2(K) set νT (K) = 0, locally no turbulence model
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A finite–element projection–based VMS method

4 Adaptive large scale space: procedure

• procedure:

◦ choose three values
0 ≤ C1 ≤ C2 ≤ C3

◦ choose a mean value η
◦ choose a frequency of updating the large scale space

nupdate

◦ in every nupdate–th step:
compute ηK and determine the local large scale space

LH(K) = P disc
2 (K), νT (K) = 0 if ηK ≤ C1η

LH(K) = P disc
1 (K) if C1η < ηK ≤ C2η

LH(K) = P0(K) if C2η < ηK ≤ C3η
LH(K) = P00(K) if C3η < ηK

• first VMS method with adaptive large scale space
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A finite–element projection–based VMS method

4 Turbulent flow around a cylinder at Re = 22000

• domain and coarse grid

• vortex street (iso–surfaces of the velocity)

• statistically periodic flow

• Re = 22000 (mean inflow, diameter of cylinder, viscosity)

• Q2/P disc
1 , no. of d.o.f.: 522 720 velocity, 81 920 pressure

• Crank–Nicolson scheme with ∆t = 0.005

• static Smagorinsky model with van Driest damping for νT

νT = 0.01(2hK,min)
2‖D(uh)‖F , hK,min – shortest edge of K
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A finite–element projection–based VMS method

4 Turbulent flow around a cylinder at Re = 22000

• characteristic values of the flow
◦ lift coefficient cl, c̄l – temporal mean, cl,rms – root mean squared
◦ drag coefficient cd

◦ Strouhal number St

• time–averaged values and rms values (30 periods)

C1 C2 C3 mean nupdate c̄l cl,rms c̄d cd,rms St

static large scale space
VMS with LH = P0 -0.002 0.96 2.48 0.15 0.139
VMS with LH = P disc

1 -0.015 0.97 2.42 0.17 0.137
large–space–adaptive method: results not much different

0.3 0.75 2 η 1 -0.016 1.28 2.55 0.14 0.139
0.2 0.75 2 η 10 -0.002 1.26 2.52 0.16 0.138
0.3 0.75 3 η 1 -0.002 1.11 2.49 0.14 0.136
0.2 0.75 2 ηt/2 1 -0.019 1.20 2.53 0.13 0.141

experimental results
0.7–1.4 1.9–2.1 0.1–0.2 0.132
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A finite–element projection–based VMS method

4 Turbulent flow around a cylinder at Re = 22000

• over-prediction of c̄d in all simulations

• all other values in reference intervals or close to reference value

• notable difference in c̄l between static and adaptive large scale space

• good parameter choices similar to other flow problems

• large scale space (pictures for every 100-th time steps)
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A finite–element projection–based VMS method

4 Summary and outlook for large scale adaptive VMS method

• more details: J., Kindl (2010)

• first VMS method with adaptive large scale space

• size of the resolved small scales is used to determine large scale space

• large–space–adaptive VMS method is able to adapt large scale space to
local intensity of the turbulence

• method can be extended to tetrahedral meshes and P bubble
2 /P disc

1 finite
element (J., Kindl, Suciu (2009), in press)

• often results with respect to time–averaged references similar to method
with fixed large scale space

• further studies of parameters of the method (C1, C2, C3, nupdate)
necessary

• mathematical analysis for adaptive method not yet available
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• mathematical analysis for adaptive method not yet available
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5 Calcium carbonate precipitation in 2d/3d

• J., Mitkova, Roland, Sundmacher, Tobiska, Voigt (2009); J., Roland (2010,
in press)

• flow: 2d, incompressible, laminar

• chemical reaction: CaCl2 + Na2CO3 → CaCO3 ↓ +2NaCl

• PSD: one internal coordinate (diameter of particles) =⇒ 3d

• chemical processes:

◦ nucleation of particles
◦ growth of particles

• no back coupling of PSD and
concentrations to flow
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• dimensionless population balance system
∂u

∂t
− 1

Re
∆u + (u · ∇)u +∇p = 0 in (0, T ]× Ω

∇ · u = 0 in [0, T ]× Ω
∂cA

∂t
− DA

u∞l∞
∆cA + u · ∇cA + kR

l∞c∞
u∞

cAcB = 0 in (0, T ]× Ω

∂cB

∂t
− DB

u∞l∞
∆cB + u · ∇cB + kR

l∞c∞
u∞

cAcB = 0 in (0, T ]× Ω

∂cC

∂t
− DC

u∞l∞
∆cC + u · ∇cC − ΛchemcAcB

+Λnuc max
˘
0, (cC − 1)5¯

+
“
cC − csat

C,∞
cC,∞

” R 1

dp,min
d2

pf d(dp) = 0 in (0, T ]× Ω

∂f

∂t
+ u · ∇f + kGcC,∞

„
cC −

csat
C,∞

cC,∞

«
l∞

u∞dp,∞

∂f

∂dp
= 0 in (0, T ]× Ω× (dp,min, 1)

A – CaCl2
B – Na2CO3

C – CaCO3
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• discretization of Navier–Stokes equations
◦ Crank–Nicolson scheme (fully implicit)
◦ Galerkin FEM
◦ Q2/P disc

1 finite element, inf–sup stable

• discretization of convection–diffusion–reaction equations
◦ Crank–Nicolson scheme
◦ linear FEM–FCT
◦ Q1 finite element
◦ explicit treatment of coupling terms with PSD

• solution of PSD equation expensive because of higher dimension

What happens if cheap methods are used?

• studied methods:
◦ explicit Euler method with finite difference upwind stabilization
◦ implicit Euler method with finite difference upwind stabilization
◦ implicit linear FEM–FCT method
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5 Coupling strategy

• discrete time tk

• 1. solve Navier–Stokes equations

◦ independent of concentrations and PSD

• 2. solve equations for cCaCl2 and cNa2CO3

◦ use velocity field computed in step 1
◦ independent of cCaCO3 and PSD
◦ nonlinear system, solved iteratively

• 3. solve equation for cCaCO3

◦ use velocity field (step 1) and cCaCl2 , cNa2CO3 (step 2)
◦ use PSD and cCaCO3 from tk−1 in nucleation and in coupling term

=⇒ linear equation

• 4. solve equation for PSD f

◦ use velocity field (step 1) and cCaCO3 (step 3)
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• volume fraction

q3(t, d̃p) :=
d̃3

pf̃(t, d̃p)∫ edp,maxedp,0
d̃3

pf̃(t, d̃p) d(d̃p)

d̃p [m] – diameter of particles,
f̃(t, d̃p) [1/m4] – PSD

• cumulative volume fraction

Q3(t, d̃p) :=

∫ edp

edp,0

q3(t, d̃p) d(d̃p)

• median of volume fraction

d̃p,50(t) := {d̃p : Q3(t, d̃p) = 0.5}
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• structured flow field

• median of the volume fraction at the center of the outlet

• temporal mean values (64 intervals for internal coordinate)
∆t = 0.005 ∆t = 0.0025 ∆t = 0.00125

FWE–UPW–FDM 3.055e-6 5.235e-6 4.809e-6
BWE–UPW–FDM 4.030e-6 5.487e-6 5.020e-6
FEM–FCT 4.246e-6 4.672e-6 5.196e-6

• iso surfaces of PSD (100, 1000, 10000, 10000 particles)
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• unstructured flow field

• median of volume fraction at center of outlet

• temporal mean values (64 intervals for internal coordinate)
∆t = 0.0025 ∆t = 0.00125 ∆t = 0.000625

FWE–UPW–FDM 1.125e-5 6.227e-6 6.591e-6
BWE–UPW–FDM 1.207e-5 6.281e-6 6.621e-6
FEM–FCT 1.947e-5 1.358e-5 1.643e-5
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• academic test example at coupled 2d/3d problem: FEM–FCT scheme
more accurate than the other schemes

• conclusion:

◦ accurate method for PSD equation necessary for turbulent flows,
e.g. linear FEM–FCT scheme

• drawback: computing time (per time step, in seconds), unstructured flow
field

∆t = 0.0025 ∆t = 0.00125 ∆t = 0.000625
FWE–UPW–FDM 3.68 1.64 2.20
BWE–UPW–FDM 5.11 3.11 3.37
FEM–FCT 8.19 6.21 6.39

◦ bottle neck: matrix assembling
◦ possible remedy: Group–FEM method, Fletcher (1983)
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6 Calcium carbonate precipitation in 3d/4d

• setup simular to 2d/3d problem

• 3d/4d simulation, Re = 10000, turbulent flow
◦ turbulence model: finite element variational multiscale (VMS) method
◦ median of the volume fraction at the center of the outlet

• similar observations as in 2d/3d example with unstructured flow field
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7 Summary and outlook

• accurate and non–oscillatory schemes necessary for discretizing all
equations

◦ FEM: alternatives to FEM–FCT? Discontinuous Galerkin methods?
◦ developing good schemes for simulating turbulent flow fields

• increasing the efficiency of the simulations

◦ parallelization of the code
◦ adaptive time stepping schemes

• current topics in the numerical simulation of population balance systems:

◦ precipitations in 3d/4d
◦ simulation of turbulent flows with droplets (clouds), E. Schmeyer
◦ simulation of the synthesis of urea, C. Suciu

http://www.wias-berlin.de/people/john/
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