

WIAS 2008

Solarzellen aus dünnen Siliziumschichten – Stand der Technik und Herausforderungen für die Zukunft

Bernd Rech Helmholtz-Zentrum Berlin (HZB) and Technische Universität Berlin

Many thanks to my colleagues from HZB and FZ-Jülich (Uwe Rau et al.), Michael Powalla from ZSW – Stuttgart and industry partners

Outline

- Motivation and Background
- Thin Film Solar Cell Technologies and Applications
- Amorphous and Microcrystalline Based Silicon and Tandem Cells
- Poly-Crystalline Si Thin-Films
- R&D Challenges and Conclusions

HELMHOLTZ ZENTRUM BERLIN für Materialien und Energie

Thermodynamic limits – Generation of electricity in a Carnot process:

Carnot efficieny = Tsun – Tearth Tsun = 95 %

This is an absolute upper limit, however, unavoidable losses of entropy reduce the thermodynamic limit towards 85 % (see e.g. Würfel, Physik der Solarzellen)

Note: due to the T_{sun} of 5800 K solar radiation is of high energetic value

"Some Commercial Efficiencies"

c-Si wafer technology

Thin film advantages

- Material usage/cost (1-5 vs 200 µm)
- High productivity (large area)
- Monolithic series connection
- Short energy pay back time
- New products (e.g., flexible)

für Materialien und Energie

Overview of photovoltaic material classes

Evolution of Record Solar Cells

Source: Brabec, MRS Bulletin, Jan. 2005

The primary idea is a tiny amount of expensive material (1 micron or so) and lots of cheap glass and wire and metal and plastic

Ken Zweibel, NREL, 2004

Thin film PV technologies

HELMHOLTZ ZENTRUM BERLIN für Materialien und Energie

Example CIGS-Solar Cell

Flexible solar cell on titanium foil

HZB: Spin-off Company

SULFURCELL

Cost reduction strategies

Cost reduction has different options

Bernd Rech, WIAS 2008

Bernd Rech, WIAS 2008

Quelle: A. Jäger-Waldau, PV status report 2007

Thin-Film PV applications

Solarpark Buttenwiesen – amorphous silicon Quelle: Phönix SonnenStrom AG

Bernd Rech, WIAS 2008

Gescher-Estern Entsorgungs-Gesellschaft Westmünsterland (EGW), put in operation August 2006. One of the biggest roof-top installations (1.4 MWp, CdTe, First Solar) 23 430 thin-film modules on an

area of ca. 17 000 m² and an investment of \in 5.6 Mio.

Source: Reinecke + Pohl Sun Energy AG

BIPV (3S AG Megaslate System)

Roof integration – family homes

Würth-Solar CIGS modules

Solar fassade

Optic Center Wales, CIS-Module, 85 kW_P, 2004

source: AVANCIS (www.avancis.de)

Bernd Rech, WIAS 2008

Semitransparent Modules

Schott Solar – a-Si

Würth Solar

Flexible thin-film PV

Source: Unisolar

Bernd Rech, WIAS 2008

Flexible thin-film PV

- Motivation and Background
- Thin Film Solar Cell Technologies and Applications
- Amorphous Silicon and Microcrystalline Based
 Silicon and Tandem Cells
- Poly-Crystalline Si Thin-Films
- R&D Challenges and Conclusions

Amorphous Silicon Based Solar Cells

BIPV:

Stillwell Avenue Terminal, New York ca. 210 kWp, installed 2004 Source: SCHOTT Solar

a-Si:H solar cell cross section

Ag

"diffusion controlled" "interface limited" "drift controlled" "bulk limited"

Microcrystalline Silicon (µc-Si:H)

Advantages and challenges:

- "red/IR-response" µc-Si:H
- no/small SWE ⇒ high stability
- preparation with PECVD
- indirect semiconductor: light trapping!
- high growth rate and process control!

pioneered by University of Neuchatel 1994 see: Uwe Rau next talk, tomorrow

first solar modules by Kaneka, J (2001) 29

a-Si:H/µc-Si:H development

BR et al. TSF 2006

Silicon growth by PECVD

(plasma enhanced chemical vapour deposition)

Substrate

source: FZ-Jülich

L. Houben, Dissertation, FZJ (IFF/IPV), Uni Düsseldorf O. Vetterl et al., Sol. Energ. Mat. Sol. Cells 62 (2000) 97-108

Optical Emission Spectroscopy (OES)

HELMHOLTZ ZENTRUM BERLIN für Materialien und Eneraie

SiH* emission (414 nm)

40

50

60

H* emission (656 nm)

30

20

time (s)

Plasma-induced substrate heating

M.N. van den Donker et al., TSF 2006

Bernd Rech, WIAS 2008

Summary: µc-Si:H Process Conditions

see PL0001 van de Sanden et al.

Bernd Rech, WIAS 2008

Successful Scale-Up @ Sontor

Module size: 1.8 m² Status: ~7.5 % (stab. tot. area) production average

"Light-Trapping" by Surface-Textured ZnO

source: FZ-Jülich

Sputtered ZnO:Al Films as Front TCO

Sputter techniques:

- rf/dc ceramic targets
- mf metallic targets, high rate

Properties of ZnO:Al

- highly transparent & conductive
- c-axis oriented
- resistant against H₂-plasmas
- smooth surface
- surface-texture by etching (depends on initial film properties!)

Optimised ZnO for Si Thin-Film Solar Cells

Bernd Rech, WIAS 2008

Tailor-made surface roughness and surface features \Rightarrow

- AR-effect by index-matching
- efficient light trapping for long wavelength light
- low free carrier absorption

Large Area Surface-Textured ZnO

ELMHOLTZ

- Motivation and Background
- Thin Film Solar Cell Technologies and Applications
- Amorphous Silicon Based Solar Cells
- Microcrystalline Silicon and Tandem Cells
- Poly-Crystalline Si Thin-Films
- R&D Challenges and Conclusions

a-Si:H / c-Si Wafer Based Cells

a-Si(n)/ <mark>c-Si(p)</mark> /a-Si(p)	Pyramids	17.4 %	629 mV	34.9 mA/cm ²	1 cm ²
a-Si(p)/c-Si(n)/a-Si(n)	Pyramids	19.8 %	639 mV	39.3 mA/cm ²	1 cm ²

Note: Record efficiencies of these cell type > 22 % by Sanyo

für Materialien und Energie

Seed layer concept Aluminium-induced layer exchange (ALILE)

Epitaxial growth of absorber layer by high rate deposition (e.g. E-Beam evaporation) Growth rate >1.2µm/h solar cell processing

Alternative Pathes:

solid phase crystallisation (first product by CSG Solar)
laser crystallisation
E-beam crystallisation

Outline

- Motivation and Background
- Thin Film Solar Cell Technologies and Applications
- Amorphous Silicon and Microcrystalline Based
 Silicon and Tandem Cells
- Poly-Crystalline Si Thin-Films
- R&D Challenges and Conclusions

Technology Value Chain In Thin-Film PV

HELMHOLTZ ZENTRUM BERLIN für Materialien und Energie

Goals for applied and fundamental R&D prerequisites to realise the production roadmap.

	2008-2013	2013-2020
Prototype/test	Demonstrate	Concept for
modules	η > 12%	η > 15 %

- Large area PECVD (high rate, process control)
- Alternative techniques for absorber deposition
- Quantitative understanding of materials interfaces and device
- improved/new materials (e.g. µc-SiGe,SiC,...)

- New deposition reactor concepts (very high growth rates, full gas usage)
- Incorporate quantum or spectrum-converting effects
- Combine thin-film Si with other PV technology
- Understand fundamental limitations of thin-film Si

source: Strategic Research Agenda for PV (PV Technology Platform)

- Thin-film solar modules will become major PV technologies within the next decade. ⇒ The proof of concept for a variety of technologies exists.
- The transfer of lab developments / prototypes into a cost effective production is the challenge today.
- There is a strong need for broad R&D to improve existing concepts and develop new thin-film technologies to open the path for higher efficiencies and lower production costs.

Scenario for the world's primary energy mix in 2100

Quelle: solarwirtschaft.de

"Key Product for the Bavarian Market flexible thin-film solar cells for cold beer"

