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nextnano overview 

Calculation of electronic structure 
   8-band k.p-Schrödinger (+LDA) and Poisson equation 
   Global strain minimization 
   Piezoelectric, pyroelectric charges, deformation potentials 
   Exciton energies and optical matrix elements 
   Magnetic field and spin effects 
   ISFET: Surface reactions @ semicond./electrolyte interfaces 

Calculation of charge current 

Simulation 
software for 3D 
semiconductor 
nanostructures 

   Si/Ge and III-V materials, Nitrides, alloys, zb and wz 
   Flexible structures and geometries 
   Quantum mechanical electronic structure 
   Equilibrium properties and carrier transport 
   Typically 5-10 downloads/day worldwide 

   Quantum-drift-diffusion method : DD eq's + quantum densities 
   Ballistic current through open systems: Contact Block Reduction 
   Full quantum transport with scattering: NEGF for quasi-1D 

Goal: Provide quick global insight into basic physical properties of 
mesoscopic semiconductor structures 



Examples of nanostructures 
1000 nm 

In |1〉 

In |0〉 

Out |1〉 

Out |0〉 

300 nm
 2DEG GaAs 

Mach-Zehnder- 
interferometer 

Self-assembled  
quantum dot array 

Individual QD with e+h wave functions 

Silicon 25 nm  
Triple-gate FET 

Quantum dot- 
resonant 
tunneling  
diode 



 nextnano Program flow 
Database: 

material parameters  
Input: 

structure, options  

INITIALIZATION 
Bulk band structures, strain, def. pot's and piezo/pyro 

CURRENT EQUATION 
QDD: Determination of quasi-Fermi levels 

Many-band k⋅p SCHRÖDINGER (LDA) EQUATION 
Determination of wave functions and bound states 

POISSON  EQUATION 
Determination of potential 

OUTPUT 

MATRIX ELEMENTS WAVE FUNCTIONS OPTICAL SPECTRA,... 



Compact geometry definition in input 

  Input file can be split up into template + very small steering file 
  Parsed input is piped through validator (analogously to XML) 
  Parser checks for syntax, validator checks content 

20 lines suffice for 
such a complex 
structure 

User-Input: ASCII file defines 
geometry and materials 



  Fully object-oriented design:   
                    easy to maintain & to extend, reusable code 
  Use of generic programming:  
                    single implementation for many types of data 
  Only 30K lines (without libraries) 
  Typically 10 times faster 

Implements common properties 
(main code part) 

Example of object oriented schemes: 
Base class: Derived classes: 

Implement specific properties 
(only few lines of additional code) 

nextnano++ code structure 
Old version is nextnano3: 250 K lines of F90 code, 400 files 

QuantumSolverPauli 

QuantumSolverKP 

QuantumSolver 

QuantumSolverSingleband 

New version: nextnano++ (written in C++) 



Numerical principles and techniques 

Use state-of-the-art sparse linear systems solvers, CG methods , 
subspace projection methods for eigenvalue problems, 
but many still need significant improvements in efficiency for N > 106 

Box integration technique: 

   div F(x) = k(x)               ∫ ∫ F · dA= 〈k〉 V 

Discretization:  

   Robust, easy to control 
   Nanostructures are edgy on nm-scale 
   Schr. eq, Poisson eq., Elast. eq., 
    smoothens interfaces 

Tensor Grid 

   Typically 100d boxes = "nodes" 



H[φ] ψi = Ei ψi  Schrödinger eqn.
Δφ = ρ[φ, ψ]  Nonlinear Poisson eqn. 

Problem: Slowly convergent with underrelaxation (charge sloshing) 

Solution: Predictor-corrector procedure* + subspace iteration 
1)   Use perturbation theory to predict approx. ρ[φ] from ψi 
2)   Solve Poisson equation using ρ  
3)   Calculate correct ρ[φ] by solving Schrödinger equation 
4)   Each nth cycle (n~2), diagonalize H in subspace of previous iteration

~ 
~ 

  Adaptive underrelaxation: 
slow, worse with Vxc 

  Predictor-corrector: fast, no 
penalty for Vxc 

Iterative Schrödinger-Poisson solution  

Numerical principles and techniques 

n n+1 

*Trellakis, JAP 81, 7880 (97) 



Spectral transform for extremal eigenvalues:  
  Find H → f(H) that isolates large eigenvalues and their eigenvectors 
  Calculate eigenvalues of H from eigenvectors of f(H) (= eigenvectors of H) 

f 

Spectrum of H 

Excellent choice for f(H) for extremal eigenvalues:  
  Chebyshev spectral transformation (Kerkhoven et al 1993) 
  Accelerates solution by at least factor of 10 for 2D problem 
  N=106, 10 (30) En, 3Ghz P4, SC: 100 s (250 s)

Best method for interior evals still not clear, currently use 
ARPACK: very robust, degenerate evals, but fairly slow. 

Numerical principles and techniques 
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Chebyshev polynomials Tn(x) 
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3.4. Solving the Schrödinger equations 
(contd.) 

Chebyshev spectral transformation:  

-  Suppression of unwanted eigenvals E>Ecut  
-  Enhancement of low-end eigenvals E<Ecut   

-  Use ARPACK on transformed problem to get ψn. 
-  Evaluate matrix polynomials using recursion.   
-  After running ARPACK determine eigenvals En.  

Gerschgorin upper 
eigenvalue bound energy cutoff 

> 

Kerkhoven et al 1993 



Electronic structure principles and techniques 

Spikes 
Ghost states 

Multiband k.p envelope function approach  

  Based on "patching up" bulk Hamiltonians to build Hamiltonian  
    for mesoscopic structures, is efficient and sufficiently accurate  
  Method has built-in ambiguities that can lead to ghost states, spikes  
    in density,... 
  Spatial discretization can lead to instabilities and wrong oscillatory  
    solutions 

Have eliminated artifacts in k.p+envelope function theory by 
  careful treatment of far-band contributions 
  using operator orderings that are manifestly self-adjoint 
  employing upwinding scheme for discretizing derivatives 



Multivalued operator ordering 

Ec i P k 

-i P k Ev+Lk2 
HVol(k) =  

P(x) ∂/∂x  or 
∂/∂x P(x) or 
(P(x) ∂/∂x + ∂/∂x P(x)) 

  Ordering unclear because of  position dependent parameter P 
  Different orderings yield Hermitian Ham., but cause 
    contradictory boundary conditions (Non-self-adjointness) 

Solution of Problem: 
Self-adjoint H  

Ec P ∂/∂x 

- ∂/∂x P Ev- ∂/∂x L ∂/∂x 
HVol(x) =  

HVol(∇) : 

Ref: B. A. Foreman, Phys. Rev. B 56, R12748 (1997) 

k·p 



Example: Eliminating oscillatory solutions 
Hbulk(k) → H(∇):  

∇F(n) = F(n+1) - F(n-1) is compatible with  

∇F(n) = ±[F(n) - F(n±1)] 

Discretization of 1. derivates is not unique. n-1 n+1 

n 

excludes unphysical oscillatory solutions 
Solution:  

H =  

Forward- 
Differencing 

Backward- 
Differencing 

Ref: Andlauer et al, to be publ. 

equivalent to 
upwinding scheme 

Electronic structure principles and techniques 



Problem:  How to solve Schrodinger equation for nanodevice in B-field? 
                 Vector potential A(x) diverges with x ⇒ Discretized version of  
                 H violates gauge invariance ⇒ arbitrary results 

(-i∂ + A(x))2 

2m H =                       +V(x) Invariance under  
gauge transformation is violated 

Solution:* 

Define U(x,y) = exp( -i  ∫  A(z) dz ) 

Define D =    [f(x+ε) - U(x+ε,x) f(x)] 

Use Hamiltonian  

x 
y 

H =           +V(x) D2 

2m 

  This Hamiltonian is gauge invariant and suitable for discretizing 
     the Schrodinger equation in magnetic fields 
  Works for any multi-band, relativistic k.p Hamilonian for nanostructures 

guarantees local 
gauge invariance 

Electronic structure principles and techniques 

*) Morschl et al, to be publ. 

ε→0 
 f(x+ε) - f(x) 

ε
∂f 
∂x if           = lim 

1 
ε



B 

Prediction of g-tensors in nanowire dots 

Nanowire 

Excellent agreement between 
calculated g-factors and experiment 
without any fitting parameters 

Nonperturbative 
inclusion of B-Field 
into 8-band k.p method 

Electron ground state g-factors 

g   experiment 
Björk et al. (2005) ┴ 

g   nextnano ┴ 

g   nextnano ║ 

┴ 



Electronic structure principles and 
techniques: Broken gap superlattices 

Band lineup Subband dispersion 

Hybridized states can  
not be assigned to be  
either electron or hole 

Ec 

Ec 

Ev 

Ev 



•  Increased computational effort: 
  Calculate N         ·N       states instead of only a few close to Fermi level 

•  For charge neutrality: ρbg(x) = NVBNGridΩBZ/LSL 

Novel method for charge density calculation 

electrons? holes? 

Occupy all states as electrons and subtract background charge 

Solution: 

all states 

Problem: 

Charge contributions can not be split into electrons and holes 

Bands Grid 

ρ(x) =  d2kII {-   |Ψn,k(x)|2 f(En,k) +   |Ψn,k(x)|2 [1 - f(En,k)]}  Σ Σ∫ 
ΩΒΖ

ρ(x) = -  d2kII    |Ψn,k(x)|2 f(En,k) + ρbg(x) Σ∫ 
ΩΒΖ



Effective band gap of InAs/GaSb SL 

Ref: G. C. Dente et al, J. Appl. Phys. 86, 1420 (1999) 

Narrow superlattices have positive effective band gap although EG< 0 

       decreases due to 
reduction of confinement 

G 
eff E 



Carrier transport in nextnano 

   Quantum drift-diffusion (QDD) equations:  

  WKB-type approach, suitable for diffusive transport near equilibrium 
  Good for barrier-limited transport 
  Misses quantum resonances and interference effects 

  Efficient method to calculate strictly ballistic transport through 
    open device with arbitrary number of leads 
  Scales with N2 rather than N3 

  Suitable for very short quantum devices close to resonance 

   Contact block reduction-method (CBR):   Mamaluy, Sabathil, V., PRB 05  

   Non-equilibrium Green’s function method (NEGF): 
  Full quantum transport with all relevant scattering mechanisms 
  Only for vertical transport (quasi-1D) 

 Kubis, V., subm.  



n-Si (1018 cm-3) n-Si SiO2 

Assessment of QDD 

n-GaAs n-GaAs (1018 cm-3) InGaAs 

0 V 

0.08 V 

Comparison of QDD with 
fully self-consistent NEGF*) 
shows good agreement...  

*) Kubis et al, Poster #96  

Tunneling through thin barrier  

Carrier capture by quantum well 

  close to equilibrium  
  in situations where interference  
    effects are weak 



2D Results: Equilibrium + QDD for Si DG-FET 



Effect of el-el interaction: 
exchange-correlation potential 

Local density functional theory adds VXC=VX+VC to VHartree  

VX >> VC 
VX = α n1/3 = 50 meV for n=1020 cm-3  

VXC has very large effect for small VSD 

VSD=0.05 V 



Electron 

Hole 

+ 
- 

Piezoelectric 
polarization charge 

+ 

- 

Hole 

Electron 

Modified exciton 
states 

Material strain 

No light emission Efficient light emission 

3D results: Self-assembled buried QD 



Hole 

Electron 

3D results: Stark shift of exciton line in QD 

   Detailed comparison with exp allows precise characterization  
   of shape and alloy composition 
   Hole sits at tip, electron at bottom 
   Depending on QD's width, height is 5-6 nm, In-concentration 
    varies from 50% at base to 100% at tip 

In.5Ga.5As WL on GaAs 



3D results: Quantum Dot Molecule 

6 nm 

εxx 

WL 

WL 

Vertically stacked  
InGaAs/GaAs QD 

Strain field  (nextnano) 

Calculate exciton energies 

Electron & hole wave functions 
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3D Results: Neutral excitons in QD-Molecule 

Quantum coupling + strain + Coulomb interaction 
  Large separation: direct  and indirect excitons 
  Small separation: el-dominated bonding and antibonding excitons 



3D Results: Anticrossing of direct + indirect states 

*) P.W. Fry et al, PRL 84, 733 (2000),  G. Ortner et al., PRL 94, 157401 (2005) 
H. J. Krenner et al., PRL 94, 057402 (2005), G. Bester et al., cond-mat/0502184 

* 

indirect 

direct 



Device 
Left lead 
(semi-infinite) 

Right lead 
(semi-infinite) 

z 

V 0 

Nonequilibrium Green’s function method 

  Open device boundary conditions, take into account contacts 
  Coupling of all Green's functions with one another is included 
  Elastic and inelastic scattering within sc Born approximation 
  Electron-electron scattering (Hartree) 
  Momentum and energy dependent self-energies 
  Spatially off-diagonal self-energies 

Full implementation of NEGF for laterally homogeneous devices 

Electrons in heterostructure 

.. feel electrostatic potential 

.. and scattering by phonons,... 

T. Kubis (PhD) 



Theory (NEGF) with rough interfaces 
Theory (NEGF) with perfect interfaces 
Theory: purely ballistic (k// conservation) 
Experiment  
(Callebaut et al APL 83, 207 (03)) 

QCL-Results: Current and Gain 

Gain region 



  Software including source is free (nextnano³ Fortran) 
  Online documentation is free 
  Online registration is free 
  Support, customized input files + on-site training 
    available on request (by S. Birner) 
  Some complex tutorial files (QCLs, MOSFETs) are not 
    free 
  nextnano++ (C++ executable) will be available soon 

How to get nextnano? 

www.wsi.tum.de/nextnano3 
www.wsi.tum.de/nextnano 

www.nextnano.de 



Summary 

   Nextnano provides base for physics of 1D, 2D, and 3D 

semiconductor nanostructures  

   Handles equilibrium electronic structure, optics, magnetic fields 

   Nonequilibrium: QDD approach, ballistic current, and NEGF 

   Successful application to 2D+3D nano-MOS, QD molecules, 

excitons, magnetic field effects, QCL‘s,... 


