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Outline

Some ‘classical’ mathematical population genetics
Coalescents with multiple collisions
Combinatorics of the infinitely-many sites mutation model

A Monte Carlo method for likelihood estimation
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Genetic variability at a 250bp piece of the mitochondrial cytochrome
b-gene in a sample of 117 atlantic cod (a random subsample from the

dataset described in E. Arnason, Genetics 2004)
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John Gillespie's ‘Great obsession’ of population genetics:

“What evolutionary forces could have lead to such divergence
between individuals in the same species?”

:
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John Gillespie's ‘Great obsession’ of population genetics:

“What evolutionary forces could have lead to such divergence
between individuals in the same species?”

A more humble obsession:

How can stochastic models help to understand
genetic variability inside populations?
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Wright-Fisher model: A fundamental maodel for ‘genetic drift’

> A (haploid) population of N individuals per generation,

> each individual in the present generation picks a ‘parent’ at random
from the previous generation,

> genetic types are inherited (possibly with a small probability of
mutation).
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Wright-Fisher model: A fundamental maodel for ‘genetic drift’

> A (haploid) population of N individuals per generation,

> each individual in the present generation picks a ‘parent’ at random
from the previous generation,

> genetic types are inherited (possibly with a small probability of
mutation).
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Genealogical point of view

Sample n (<« N) individuals from the ‘present generation’

present—

:
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Kingman’s coalescent

Theorem (Kingman, 1982) L

In the limit N — oo, the genealogy of an n-sample,
measured in units of N generations, is described by
a continuous-time Markov chain where each pair of
lineages merges at rate 1.
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Kingman’s coalescent

Theorem (Kingman, 1982) L

In the limit N — oo, the genealogy of an n-sample,
measured in units of N generations, is described by
a continuous-time Markov chain where each pair of
lineages merges at rate 1.

The same limit appears for any exchangeable offspring vectors

(v1,...,UN), (independent over generations),
e . N : 9 .
if time is measured in —; generations, where 0 = lim Var(v;).
o2 N—o00
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Kingman’s coalescent: superimposing neutral types

Assume that the considered genetic types L %

do not affect their bearer’s reproductive succes.

If as population size N — oo,

—5 X mutation prob. per ind. per generation — r,
a
the type configuration in the sample can be described by putting

mutations with rate r along the genealogy.

:
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Kingman’s coalescent: superimposing neutral types

Assume that the considered genetic types L %

do not affect their bearer’s reproductive succes.

If as population size N — oo,

—5 X mutation prob. per ind. per generation — r,
a
the type configuration in the sample can be described by putting

mutations with rate r along the genealogy.

Kingman's coalescent is the standard model of mathematical population
genetics.
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Coalescents with multiple collisions, aka ‘A-coalescents’

While n lineages, any k coalesce at rate 1 1

Ak = 2*2(1 — )" % A(dx), where A is a finite measure on [0,1].
[0,1]
(Sagitov, 1999; Pitman, 1999).
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Coalescents with multiple collisions, aka ‘A-coalescents’

While n lineages, any k coalesce at rate 1 1

Ak = 2*2(1 — )" % A(dx), where A is a finite measure on [0,1].
[0,1]

(Sagitov, 1999; Pitman, 1999).

Interpretation:

re-write A, = f[o 1 aF(1 — 2)"F L A(dx) to see:

at rate 23 A([z,  + da]), an ‘z-resampling event’ occurs.

Thinking forwards in time, this corresponds to an event in which the

fraction = of the total population is replaced by the offspring of a single
individual.
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Coalescents with multiple collisions, aka ‘A-coalescents’

While n lineages, any k coalesce at rate 1 1

Ak = 2*2(1 — )" % A(dx), where A is a finite measure on [0,1].
[0,1]
(Sagitov, 1999; Pitman, 1999).

Interpretation:
: _ k —k 1 :
re-write A, = f[o,l] 2*(1 — )" % S5 A(dzx) to see:
at rate 5 A([z,x + dz]), an ‘z-resampling event’ occurs.
Thinking forwards in time, this corresponds to an event in which the

fraction = of the total population is replaced by the offspring of a single
individual.

Note: A = ¢y corresponds to Kingman's coalescent.
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Cannings’ models in the

‘domain of attraction of a A-coalescent’

Fixed population size N, exchangeable offspring numbers in one generation

(1/1,V2,... ,VN).

Sagitov (1999), M&hle & Sagitov (2001) clarify under which conditions
the genealogies of a sequence of exchangeable finite population models are
described by a A-coalescent:

> ¢y := pair coalescence probability over one generation — 0
(ev = ygEpi(n —1)])
> two double mergers asymptotically negligible compared to one triple
merger
> NenP(a given family has size > Nz) ~ le y2A(dy)

Time is measured in 1/cx generations (in general # 1/pop. size)
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A ‘heavy-tailed’ Cannings model

Haploid population of size N. Individual i has X; potential offspring,
X1,Xo,..., Xy arei.id. with mean m := E[Xl] > 1,

P(X1 > k) ~ Const. x k= with a € (1,2).

Note: infinite variance.

Sample N without replacement from all potential offspring to form the
next generation.

:
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A ‘heavy-tailed’ Cannings model

Haploid population of size N. Individual i has X; potential offspring,
X1,Xo,..., Xy arei.id. with mean m := E[Xl] > 1,

P(X1 > k) ~ Const. x k= with a € (1,2).

Note: infinite variance.

Sample N without replacement from all potential offspring to form the
next generation.

Theorem (Schweinsberg, 2003)

Let ¢y = prob. of pair coalescence one generation back in N-th model.
cn ~ const. N'=% measured in units of 1/cy generations, the genealogy
of a sample from the N-th model is approximately described by a
A-coalescent with A = Beta(2 — a, ).

((Beta(2 — . a)(dr) = 1o (2) rrzyraye’ ~ (01— 2) dr )
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Why A = Beta(2 — o, )?

Heuristic argument:

Probability that first individual’s offspring provides more than fraction y of
the next generation, given that the family is substantial (i.e. given

Xl > EN)
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Why A = Beta(2 — o, )?

Heuristic argument:

Probability that first individual’s offspring provides more than fraction y of
the next generation, given that the family is substantial (i.e. given

Xl > EN)

X1
P
(Xl + (N — 1)m

- IP’(XI > (N — 1)mli X > sN)
—y

1 — )2
~ const.(gTy) = const.’ Beta(2 — «, a)([y, 1]).

> y|x1 2 eN)
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The family Beta(2 — o, a), a € (1,2]

> Kingman's coalescent is included as a boundary case:

Fas

—

o o1 oz o3

04

05

06 o7 08 09

Beta(2 — a,a) — &y weakly as o — 2.

1

> Smaller o means tendency towards more extreme resampling events.

> For o < 1, corresponding coalescents do not come down from infinity.

> Beta(2 — «, «)-coalescents appear as genealogies of a-stable

continuous mass branching process (via a time-change).
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‘Meta-mathematic’ associations

Brownian motion — Kingman's coalescent
N N
Stable processes — Beta(2 — a, a)-coalescents
N N
General Lévy processes <« General A-coalescents
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Asymptotics of the frequency spectrum

Consider an n-Beta(2 — «, «v)-coalescent, mutations at rate r according to
the infinitely-many-sites model (assuming known ancestral types). Let

M(n) := #total number of mutations in the sample,

My (n) := #number of mutations affecting exaktly k& samples,

k=1,2,...,n—1.
Theorem (Berestycki, Berestycki & Schweinsberg, 2005-)
M(n) ala—1)(a)  Mg(n) o I(k+a—2)
—Tr , ( _
n2-o 2 -« n2-o k!

a—1)

in probability as n — oc.
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Asymptotics of the frequency spectrum

Consider an n-Beta(2 — «, «v)-coalescent, mutations at rate r according to

the infinitely-many-sites model (assuming known ancestral types). Let

Mp(n)

#total number of mutations in the sample,

#number of mutations affecting exaktly k& samples,

k=1,2,...,n—1.
Theorem (Berestycki, Berestycki & Schweinsberg, 2005-)

Ta(a — D) Mpg(n)

M(n)

n2—a

2 —« T p2a (

in probability as n — oc.

a—1)

Ik +a—2)

k!

Thus M;(n)/M(n) ~ 2 — « for n large, which suggests

M1 (n)

apBs = 2 —

as an estimator for a.
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A likelihood approach

If the observations had been generated by putting mutations
at rate r > 0 on a realisation of a certain A-coalescent
(from some class, e.g., Beta(2 — a, o)),
for which (A, 7) is

PA,»(observations) maximal?
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Infinitely-many-sites model

An infinite sequence of completely linked sites, mutations always hit a new

site
Example:

segr. site
Seq. |1 2 3 4
1 1 0 0 O
2 1 1 0 O
3 0 0 1 1
4 0 0 1 1
5 0 0 1 0

(0=wild type, 1=mutant
assume known ancestral types)

11

Obs. fit IMS <= no sub-matrix 1 0
0 1

(nor row permutation).
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Infinitely-many-sites model, |1

If the infinitely-many-sites model applies, the observations correspond to a
unique rooted perfect phylogeny (or ‘genetree’).

Sequences, Genetree,
segr. site
Seq. |1 2 3 4
1 1 0 0 O 1 3
2 1 1 0 O
3 0 0 1 1 2 4
4 0 0 1 1
5 0 0 1 0 1 2 34 5

Construct e.g. using Gusfield’s (1991) algorithm.

obs. types
type | multiplicity
(1,0 1
(2,1, 0) 1
(4, 3, 0) 2
(3. 0) 1

Note: purely combinatorial, does not depend on a probabilistic model for

the observations.
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“Naive approach”

We have

pAa(T,n) Z IP’AT marked geneal. tree of n-sample = T)
TECT,U

where Cry, are all marked coalescent trees compatible with the
obsrvations.

Problem: Too many trees!

:
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Recursions for tree probabilities (B. & Blath, 2007)

T a tree of (ordered) types, type multiplicity vector n.

ni—k+1
pAr T n Z Z( > mpA,r(TJl— (k_l)ei)

n1n>2k 2

.
+— > par(sk(T),m)
n king =1, qdistinct

s(zp)Fw ;Y5

_|_L Z Z (nj + Dpar(re(T), re(n + €5)).

Tn oy, 1
np=Lrry j:s(xy)=x;
distinct

where e;: j-the unit vector, s;(T"): removes first coordinate of k-th sequence in
n, 7, (T'): removes k-th sequence from T, zyo ‘distinct”: <=

Tpo # @ig,V(1, ... xq) und (i,7) # (k,0), rn =1+ > 05 (1) Ak
Extendes Ethier & Griffiths (1987) to A-case and M&hle (2005) to IMS.
Note: true recursion in complexity of (T, n).
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Markov chains and linear equations

|S| < 00, (ggy) transition kernel S, f: S — R.

u(x) = f(2)Y  qayuly), €S CS

yeSs

with given boundary values on S'\ S’
X a g-Markov chain, 7 := min{k : Xj, ¢ S'}.

If 7 < K for a fixed K < oo,
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A Monte-Carlo method

Unsing this and the recursion for pj ,:

T

pa(T,n) = E(p) [H f(Xi):|

=0

for a suitable Markov chain on type trees with multiplicities (analogous to
Griffiths & Tavaré, 1994).
> Unbiased estimate pj (7, n) via independent runs

> Finite runtime: complexity of (7, n) (:=#mutations + sample size)
decreases in each step

> Can view chain as an integral on “(A-)coalescent histories”
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The Monte-Carlo method (details to be glossed over)

Transition mechanism

(sx(T),n) w. p. MT if
ni = 1, xo distinct, s(zi) # z;V7,
(T,n) — ¢ (re(T),rk(n+€;)) w. p. MT(W +1)if

ni = 1, xo distinct, s(zy) = 5,

(Ty)n— (k—1)e;) w.p. m(’;))\nk’gjﬁfl if 2<k <n;,

where

Pl = o+ Y Y iyt

kinp=1,zqdistinct kinp=l,zg j: Sk(wk =x;
sp(@p)FAe Vi distinct

L n n;—k+1
DR M (o

1<i<d:in; >2 k=2
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Simulated datasets: o« = 1.25, 1.5, 1.75, 2, r = 2.0

log;(likelihood

)

., logy(likelihood)
28 . r

—15
A (
g —20 —25
3
5 —25 -30
&2 —30
—35
—35
1
_40 —40
B . B . J B—45 . . . . . B—45
1.2 1.4 1.6 1.8 2. 1.2 1.4 1.6 1.8 2.0
(0% «
log;(likelihood) ) log (likelihood)
—20 —30
—25 &2 —35
—30 —40
T2 1.4 1.6 1.8 2.0 T2 14 1.6 1.8 2.0
(0% (&7
:
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ﬁBeta(zfa o) ,(data) for the cod sample

log; (likelihood)

Maximum at & = 1.3, 7 = 0.7. apps = 2 — 9/14 ~ 1.36.
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Further issues

> Reduce variance of estimator via importance sampling?
> Properties of estimators?

> Interplay of demographic stochasticity and recombination,
“A-ancestral recombination graph”?

> More general mutation models, unknown ancestral types

> Selection, population substructure

beta genetree is available (under GNU General public licence) from

http://www.wias-berlin.de/people/birkner/bgt/
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