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dynamical systems
. Center manifold theorem
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. Sun star calculus

. Stability and dichotomy for linearized hyperbolic systems
. Proof of principle of linearized stability and center manifold theorem

for semilinear hyperbolic systems

. Applications
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Dynamical System

Given a dynamical system
d

dt
x = f(x).

. State x ∈ X

. ODE:
. X = Rn

. f : Rn → Rn ist Ck smooth

. PDE:
. X Banach-space
. f a densely defined operator

,
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Determining the stability of stationary states

Let x0 be a stationary state.

1. Linearize in x0:
d

dt
h = Df(x0)h.

2. Determine the stability of the linearized problem:
. Locate the spectrum of Df(x0).

3. Prove that the nonlinear problem is stable near x0.

Theorem (Principle of linearized stability)

Suppose there exists s < 0, so that for all λ ∈ σ(Df(x0))

Reλ ≤ s < 0.

Then x0 is exponentially stable.

,
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Approximation of the nonlinear dynamics via the linearized dynamics

. For the proof we need that the linearization Df(x0) is a good
approximation for f near x0.

. PDE: The operator f contains nonlinear Nemytskij operators. Their
differentiability properties depend on the topology of the
Banach-space X.

. Usually it is not enough to consider only one Banach space X. Often
we need a triple or even scale of Banach spaces.

,
Linearized Stability and Invariant Manifold Theorem for Semilinear Hyperbolic Systems 12.2.2007 5 (42)



Stability of the linearized problem

. As is well known in finite dimensions the stability of the linear system
d
dth = Df(x0)h is determined by the eigenvalues (spectrum) of the
matrix Df(x0).

. In infinite dimensions, where X is a Banach-space, the issue is more
complex.

. The appropriate abstract setting is provided by the theory of C0

semigroups
(
eAt

)
t≥0

of bounded linear operators on the
Banach-space X.

,
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Growth and spectral bound

Definition

Let A = Df(x0) be a generator of a C0 semigroup eAt. The spectral
bound s(A) ist defined as

s(A) := sup {Re z | z ∈ σ(A)} .

The growth bound ω(A) is per definitionem

ω(A) := inf
{
ω ∈ R | ∃M=M(ω)>0 :

∥∥eAt
∥∥ ≤Meωt for t ≥ 0

}
.

. ω(A) = s(A) for ODEs, DDEs, semilinear parabolic PDEs.

. In general: ω(A) ≥ s(A), equality must not hold.

. Warning: There exists a counterexample of a 2d wave equation with

ω(A) > s(A).
,
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Determining the growth bound ω(A)

Proposition

For t > 0

ω(A) =
log r(eAt)

t
,

where r(eAt) := sup
{
|z| | z ∈ σ(eAt)

}
denotes the spectral radius of the

semigroup eAt.

Method for determining the growth bound ω:
. Calculate σ(A) by solving spectral problem.
. Important open question for hyperbolic PDEs: Can the unknown

spectrum σ(eAt) of the semigroup be calculated from the spectrum
σ(A) of the generator A (the equations of the PDE) ?

Theorem

For hyperbolic systems in 1d the answer is positive: ω(A) = s(A).
,
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Existence of center manifolds

Assumptions:

. s(A) ≤ 0

. Ec := σ(A) ∩ iR 6= ∅

. Spectral gap: There exists δ > 0 such that

{z ∈ C | −δ < Re z < 0} ⊂ ρ(A).

Let πc : XC → XC denote spectral projection corresponding to the
critical eigenvalues Ec, where XC denotes complexification of X.
Further let

Xc :=X ∩ Im(πc) = X ∩
⊕
λ∈Ec

∞⋃
j=1

Ker (λId−A)j ,

Xs :=X ∩Ker(πc).

,
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Spectrum of the traveling wave operator (LDSL)

,
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Spectral gap and exponential dichotomy

. For ordinary differential equations, delay equations and semilinear
parabolic PDEs it is known, that the spectral gap condition generates
an exponential dichotomy on the spectral decompositions.

. Let Tc(t) := eAt
|Xc

and Ts(t) := eAt
|Xs

. ∃c > 0 : ‖Ts(t)‖ ≤ ce−δt for t ≥ 0

. ∀ε > 0∃d > 0 : ‖Tc(−t)‖ ≤ deεt

. Exponential dichotomy is necessary for the proof of center manifold
theorem.

. If there is no exponential dichotomy, it is known due to a result of
Mane, that the critical eigenspace Xc does not persist under small
nonlinear perturbations.

,
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Center manifold theorem

Theorem

There exists a neighbourhood U of zero in X and a smooth graph
γ : Xc ∩ U → Xs with the following properties:

. the manifold M := {x0 + xc + γ(xc) | xc ∈ U ∩Xc} is locally
invariant and exponentially attractive with respect to the nonlinear
semiflow,

. any solution u : R→ x0 + U lies on M ,

. the trajectories on M are governed by the equation

d

dt
xc = Df(x0)xc + πcr(xc + γ(xc)),

where the remainder r is of order 2.
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Core problems for existence of invariant manifolds in infinite dimensional

dynamical systems

. Does a spectral gap generate an exponential dichotomy ?

. Does the evolution equation form a smooth semiflow on X ? Is the
solution map linearizable with respect to the norm of X ?

. If yes, for which Banach-spaces are both properties fulfilled ?

These issues have been resolved for large classes of semilinear parabolic
PDEs and DDEs, but not for hyperbolic PDEs.

,
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A general class of semilinear hyperbolic systems

(SH)


∂
∂t

(
u(t, x)
v(t, x)

)
= K(x) ∂

∂x

(
u(t, x)
v(t, x)

)
+ H(x, u(t, x), v(t, x)),

v(t, l) = D u(t, l),
u(t, 0) = E v(t, 0).

. x ∈ ]0, l[, t > 0

. u ∈ Rn1 , v ∈ Rn2 , n = n1 + n2, D, E matrices

. K(x) = diag (kj(x))1≤j≤n, kj ∈ C1([0, l],R),

kj < 0 1 ≤ j ≤ n1, kj > 0 n1 + 1 ≤ j ≤ n.

. H : ]0, l[×Rn → Rn smooth in (u, v), measurable in x
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Variation of constants formula

Let T (t) be the reflection / shift semigroup generated by
∂
∂t

(
u(t, x)
v(t, x)

)
= K(x) ∂

∂x

(
u(t, x)
v(t, x)

)
,

u(t, 0) = E v(t, 0), v(t, l) = Du(t, l)
u(0, x) = u0(x), v(0, x) = v0(x).

The nonlinearity H : ]0, l[×Rn → Rn generates a Nemytskij operator:
For u : ]0, l[→ Rn1 , v : ]0, l[→ Rn2

H (u, v) (x) := H(x, u(x), v(x)).

Formally the variation of constants formula for (SH) reads

“

(
u(t)
v(t)

)
= T (t)

(
u0

v0

)
+

∫ t

0
T (t− s)H(u(s), v(s)) ds.”

,
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Which choice of space X ?

“

(
u(t)
v(t)

)
= T (t)

(
u0

v0

)
+

∫ t

0
T (t− s)H(u(s), v(s)) ds.”

It is tempting to take the Hilbert space L2(]0, l[ ,Rn) for X:

. T (t) is strongly continuous on L2.

. The Nemytskij operator H ist not well defined on L2.
. Need to truncate the nonlinearity H so that the Nemytskij operator

becomes well defined and globally Lipschitz on L2.

. But still it is not Fréchet differentiable due to the (rather surprising)
fact that H : L2 → L2 is differentiable at some
(u, v) ∈ L2(]0, l[ ,Rn) if and only if for almost all x ∈ ]0, l[ the
function z 7→ H(x, z) is affine.

,
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A good choice for X

“

(
u(t)
v(t)

)
= T (t)

(
u0

v0

)
+

∫ t

0
T (t− s)H(u(s), v(s)) ds.”

Take

X :=
{

(u, v) ∈ C([0, l],Rn) | u(0) = Ev(0), v(l) = Du(l)
}

.

. T (t) is strongly continuous on X.

. But H maps X out to a larger space: If (u, v) ∈ X then H(u, v) /∈ X
for almost any choice of H and (u, v).

. Need to enlarge the space X !

,
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Enlarging X, the sun star space

Idea: Construct a larger space in terms of a combination of properties
of the space X and the semigroup T .

. Let T ∗(t) : X∗ → X∗ be the adjoint semigroup

. Then t→ T ∗(t)x∗ is not necessarily continuous (even not Bochner
measurable, but weak star continuous). Let

X� :=
{

x∗ ∈ X∗ | lim
t↓0
‖T ∗(t)x∗ − x∗‖ = 0

}
be the subspace on which T ∗ is strongly continuous.

. Define j : X → X�∗, 〈jx, x�〉 := 〈x�, x〉 (X�∗ := (X�)∗)

. j is injective since X� is weak star dense in X∗, hence

X
j

↪→X�∗.

,
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Enlarging X, the sun star space

Put
T�(t) := T ∗(t)|X� .

By definition T�(t) : X� → X� is a strongly continuous semigroup.
Again consider the adjoint semigroup T�∗(t) = (T�(t))∗ : X�∗ → X�∗.

∀x� ∈ X� : 〈T�∗(t)jx, x�〉 = 〈jx, T�(t)x�〉
= 〈T�(t)x�, x〉
= 〈x�, T (t)x〉
= 〈j(T (t)x), x�〉.

. Hence j(T (t)x) = T�∗(t)jx or

j ◦ T (t) = T�∗(t) ◦ j.
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Enlarging X, the sun star space

T (t) : X −−−−→ T ∗(t) : X∗y
T�∗(t) : X�∗ ←−−−− T�(t) : X�

X
T (t)−−−−→ X

j

y j

y
X�∗ T�∗(t)−−−−→ X�∗
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The sun star space for hyperbolic systems with reflection boundary

conditions

Theorem

X�∗ is isomorphic to L∞([0, l],Rn).

For

(
u
v

)
∈ X : T�∗(t)

(
u
v

)
= T (t)

(
u
v

)
.

The main advantages of using the space X together with its sun dual
X�∗ are based on the following two Lemmas:

Lemma

If H(x, z) is measurable with respect to x and smooth with respect to z
then the Nemytskij operator H (u, v) (x) := H(x, u(x), v(x)) is a smooth
map from X into X�∗.
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Variation of constants formula

Moreover we get back from X�∗ into the small space X:

Lemma

Let f : [0, T ]→ X�∗ be norm continuous. Then the weak-star integral

t 7→
∫ t

0
T�∗(t− s)f(s) ds

is norm continuous and takes values in X.

Definition (Variation of constants formula)

(u, v) ∈ C([0, T ], X) is called a mild (or weak) solution to (SH) if(
u(t)
v(t)

)
= T (t)

(
u0

v0

)
+

∫ t

0
T�∗(t− s)H(u(s), v(s)) ds.
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Some straightforward consequences

Theorem (Unique local existence)

For any (u0, v0) ∈ X there exists a δ > 0, depending only on
‖(u0, v0)‖X , H and T (t), such that (SH) has a unique mild solution
(u, v) ∈ C([0, δ], X) with u(0) = u0, v(0) = v0.

Theorem

Let z ∈ C([0, T ], X) be a weak solution of (SH). Then there exists a
neighborhood U of z(0) in X such that for all y0 ∈ U there is a weak
solution y ∈ C([0, T ], X) of (SH) satisfying y(0) = y0.
There exists a constant c > 0 such that for all y0 ∈ U

‖z(t)− y(t)‖X ≤ c‖z(0)− y0‖X .

,
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The smooth semiflow

Suppose there exists a weak solution z ∈ C([0, T ], X) of (SH). Then
according to the last Theorem there exists an open neighborhood U of
z(0) in X so that we can define a solution map

St : U → X, St(y0) := y(t) (t ∈ [0, T ]).

Theorem (Smooth semiflow property)

For each t ∈ [0, T ] the map St : U → X is Ck smooth. The map
(t, u) 7→ Stu is continuous from [0, T ]× U into X. The total derivative

DSt,

(
h̃u(t)
h̃v(t)

)
= DSt

(
hu

hv

)
satisfies the equation

(
h̃u(t)
h̃v(t)

)
= T (t)

(
hu

hv

)
+

∫ t

0
T�∗(t− s)DH(u(s), v(s))

(
h̃u(s)
h̃v(s)

)
ds.

,
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Linearization of (SH)

Let (u0, v0) be a stationary state. Then the last theorem states that the
linearized flow DSt(u0, v0) is given by the mild solutions to the linearized
system

(LH)


∂
∂t

(
u(t, x)
v(t, x)

)
= K(x) ∂

∂x

(
u(t, x)
v(t, x)

)
+∂(u,v)H(x, u0(x), v0(x))

(
u(t, x)
v(t, x)

)
,

v(t, l) = Du(t, l), u(t, 0) = E v(t, 0).

Proposition

The linearized flow DSt(u0, v0) is a C0 semigroup eAt on X with
infinitesimal generator

A

(
u
v

)
= K(x) ∂

∂x

(
u(x)
v(x)

)
+ ∂(u,v)H(x, u0(x), v0(x))

(
u(x)
v(x)

)
.
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(α, β) exponential dichotomy

Definition

Let α < β. A has a (α, β) exponential dichotomy, if there exists a
projection π : XC → XC such that

. πeAt = eAtπ

. For T1(t) := eAt
|Im (π) and T2(t) := eAt

|Ker(π)

. ω(T1(t)) ≤ α

. T2(t) extends to a group with ω(T2(−t)) ≤ −β.
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(α, β) exponential dichotomy

,
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Characterization of exponential dichotomy

Theorem

The following are equivalent:

. A has a (α, β) exponential dichotomy.

. ∀t>0 : {λ ∈ C | eαt < |λ| < eβt} ⊂ ρ(eAt).

. ∃t0 > 0 : {λ ∈ C | eαt0 < |λ| < eβt0} ⊂ ρ(eAt0).

. Exponential dichotomy means that there is a circular spectral gap for
the semigroup eAt.

. Does a spectral gap condition on A imply the presence of a circular
spectral gap for eAt ?

,
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Spectral mapping theorems for linearized hyperbolic systems

Theorem

. σ(eAt) \ {0} = eσ(A)t \ {0} in L2([0, l],Cn)

. In XC = {(u, v) ∈ C([0, l],Cn) | u(0) = Ev(0), v(l) = Du(l)} for
all α < β and t > 0 we have

{z ∈ C | α < Re z < β} ⊂ ρ(A)

⇔
{

z ∈ C | eαt < |z| < eβt
}
⊂ ρ(eAt).

Corollary

If α < β and {λ ∈ C | α < Reλ < β} ⊂ ρ(A), then A has a (α, β)
exponential dichotomy.
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Spectral mapping theorem σ(eAt) = eσ(A)t

,
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Proof of spectral mapping theorem

. High frequency estimates of spectrum and resolvent parallel to the
imaginary axis:

. For high frequencies spectrum and resolvent are approximated by the
diagonal system.

. For λ on stripes in the resolvent set parallel to the imaginary axis we
have for |Im λ| sufficiently large

R(λ, A) = R(λ, A0) +
1
λ

R1(λ) + O

(
1
λ2

)
.

. A0 denotes the diagonal system, obtained by cancelling all
nondiagonal entries in the linearized differential equation. Since
equations decouple there is a closed formula for R(λ, A0).

. Error term R1(λ) as well as higher order terms can be calculated
recursively (terms quite complicated).

,
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Estimates for spectrum

Theorem

There exists an exponential polynomial h0 and an entire (characteristic)
function h with the following properties:

. σ(A) = {λ ∈ C | h(λ) = 0},

. σ(A0) = {λ ∈ C | h0(λ) = 0},

. For all r > 0 there exist c, d > 0 such that for all λ ∈ C with
|Reλ| < r und |Im λ| > d we have:∣∣∣∣h(λ)− h0(λ)− 1

λ
h1(λ)

∣∣∣∣ ≤ c
1
|λ|2

,

. There is a closed formula for h1 (quite complicated).

,
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Resolvent estimates

Theorem

Let U ⊂ ρ(A) be such that

sup
λ∈U
|Reλ| <∞, inf

λ∈U
|h0(λ)| > 0.

Then there exists d > 0 such that for λ ∈ U with |Im λ| ≥ d

. R(λ, A) = R(λ, A0) + 1
λR1(λ, A) + 1

λ2E(λ, A),
. R(λ, A0), R1(λ, A) and E(λ, A) are bounded on U ,

. There are closed formulas for R1(λ, A) and R(λ, A0).

. In particular the resolvent R(λ, A) is bounded on U .

,
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Spectral mapping theorem in L2

. By applying an important theorem due to Gearhart/Herbst/Prüss
[Trans. AMS 1984] the resolvent estimates imply the following
spectral mapping property for linearized hyperbolic systems in the
Hilbert space L2

σ(eAt) \ {0} = eσ(A)t \ {0}.

. Problem: theorem of Gearhart/Herbst/Prüß requires Hilbert-space.

. The semiflow is not strongly linearizable in L2.

. We need a spectral mapping theorem or characterization of
exponential dichotomy in terms of the spectrum of A in the smaller
nonreflexive Banach-space XC.

,
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Spectral mapping property in non Hilbert-space XC

. For Banach-space the situation is more difficult. Counterexamples
show that Gearhart/Herbst/Prüss spectral mapping theorem fails, in
general.

. Idea: Use C1 Laplace-inversionformula. For ρ > ω(A)

eAtx =
1

2πi

∫ ρ+i∞C1

ρ−i∞
eztR(z,A)x dz

:=
1
2π

lim
R→∞

eρt

∫ R

−R
eiνtR(ρ + iν, A)x

(
1− |ν|

R

)
dν.

. Works also in non Hilbert-space XC !

,
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Characterization of (α, β) dichotomy in XC

Theorem (1994 Lunel, Kaashoek in J. Diff. Eq.)

A has a (α, β) exponential dichotomy if and only if

ı) ρ(A) ⊃ {λ ∈ C | α < Reλ < β} ,

ıı)For all δ > 0 : sup
α+δ<Reλ<β−δ

‖R(λ, A)‖ <∞,

ııı)For all ρ ∈ ]α, β[ there exists a constant Kρ > 0 such that for

all x ∈ XC, x∗ ∈
(
XC

)∗
Fr(·, ρ, x, x∗) ∈ L∞(R) and ‖Fr(·, ρ, x, x∗)‖L∞ ≤ Kρ ‖x‖ ‖x∗‖ ,

where r(·, ρ, x, x∗) : R→ C is defined as

r(ν, ρ, x, x∗) := x∗R(ρ + iν, A)x.

,
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Characterization of (α, β) dichotomy in XC

. Necessity of conditions follows directly from the Hille-Yosida theorem
and the C1 Laplace inversion formula applied to A|Im π and A|Ker π.

. Sufficiency: Proved in two papers by Kaashoek, Lunel, Latushkin [J.
Diff. Eq. 1992, Oper. Theor. Adv. Appl. 2001].

. The resolvent estimates are in sufficiently closed form so that the
Fourier transforms can be estimated.

. Warning: Convergence of improper Fourier integrals only in Cesaro
mean C1, no absolute convergence.

. Tools:
. 1

2π

∫C1

R
eiωtF−1f(ω) dω = f(t+)+f(t−)

2 ,
. Wiener Algebra property of absolutely convergent Fourier series.

Theorem

Principle of linearized stability and center manifold theorem hold true for
hyperbolic systems.

,
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Applications

The results are applicable to large classes of practical problems:

. Stability and bifurcation analysis in Laser dynamics

. Model Reduction: Mode approximations [Bandelow, Wenzel,
Wünsche 1993]

. Turing-Models with correlated random walk [Kac, Goldstein, Hadeler,
Hillen, Horsthemke, ...]

. Boltzmann-systems

. Tubular reactor processes

. Systems of vibrating strings

. Differential equations with delay

. ...

,
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The traveling wave model

1
vg

∂tE
± = (∓∂z − iβ(n))E± − iκE∓ − g

2
(
E± − P±

)
∂tP

± = γ
(
E± − P±

)
+ iωP±

∂tn = I −R(n)− vgRe〈E, g(n)E − g(E − P )〉C2

E+(t, 0) = r0E
−(t, 0) + α(t), E−(t, l) = rlE

+(t, l).

. t ∈ R time, z ∈ [0, l] longitudinal coordinate

. E± = E±(t, z) ∈ C complex envelope of optical field, P± = P±(t, z) ∈ C polarization,
n = n(t, z) ∈ R carrier density

. spontaneous recombination R(n) = An + Bn2 + Cn3

. propagation coefficient β(n) = δ0 − i α
2

+ i
2
g(n) + δN (n)

. field gain g(n) = G′ log n
ntr

, effective index dependence δN (n) = −
√

n′n, current

injection I = I(t, z), optical injection α(t) at left facet of laser, reflection coeffecients r0

and rl
. all coefficients depend on lateral coordinate z

,
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A two parameter numerical bifurcation analysis of the raveling wave

model (LDSL, M. Radziunas)

,
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Current Work: The 2d diffraction extended traveling wave model

1
vg

∂tE
± = −i

1
2K

∂xxE± + (∓∂z − iβ(n))E± − iκE∓ − g

2
(
E± − P±

)
∂tP

± = γ
(
E± − P±

)
+ iωP±

∂tn = dn∂xxn + I −R(n)− vgRe〈E, g(n)E − g(E − P )〉C2

E+(t, 0, x) = r0(x)E−(t, 0, x) + α(t, x), E−(t, l, x) = rl(x)E+(t, l, x).

. All coefficients now depend on longitudinal (z) and lateral (x) coordinate.

. In optical equation for E a diffraction operator has been addd (red).

. In carrier equation for n a lateral diffusion operator has been added (blue).
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Stable pulsating high power diode

Laser geometry and parameters provided by FBH.
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