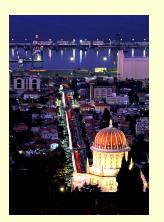
Mapping the Genome: Mathematical and computational cha Ilenges

A. Korol

korol@research.haifa.ac.il Institute of Evolution, University of Haifa, Israel



Berlin, Weierstrass Institute, October 2006

<u>Outline</u>

Biological Background Organization of genetic material (DNA) Recombination

Building multilocus maps Reduction to *TSP* Consensus mapping as "synchronous" *TSP*

Mapping quantitative traits Univariate and multivariate formulations Using novel chip technologies The challenge of high dimensionality Some background

Life, Cell, and the Genome

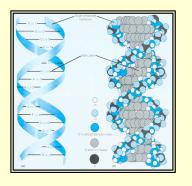
Life primary (Metabolism (catalyzed) principles: { Reproduction (inheritance) **Evolution**

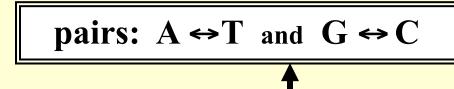
Genome as evolving "program"

Genetic material: Molecular organization

Double helix DNA (Watson & Crick, 1953):

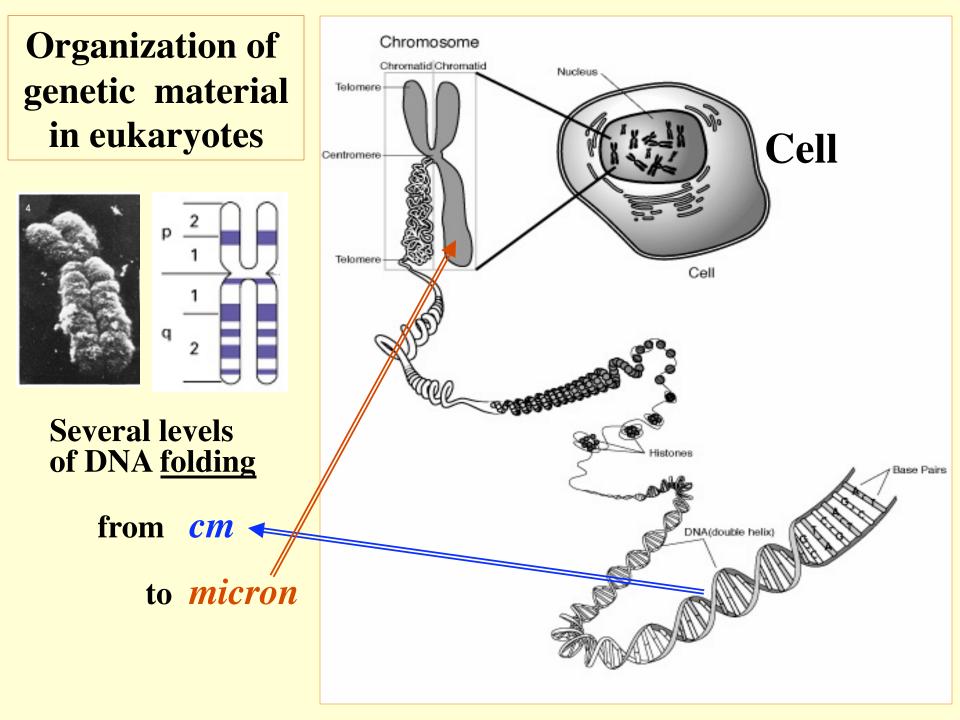
- (a) <u>location</u> mainly in chromosomes (nucleus)
- (b) <u>structure</u> a long double helix molecule
- (c) <u>coding elements</u> cytosine (C) & thymine (T) adenine (A) & guanine (G)



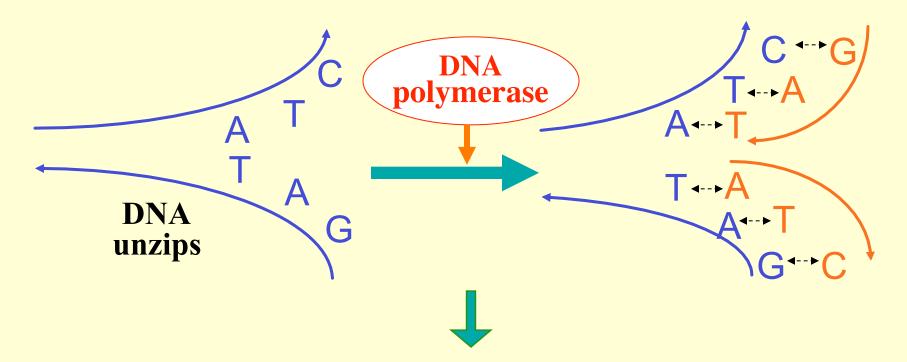


Complementary pairing

Genes encoding for proteins and other molecules are using this 4-letter alphabet across life

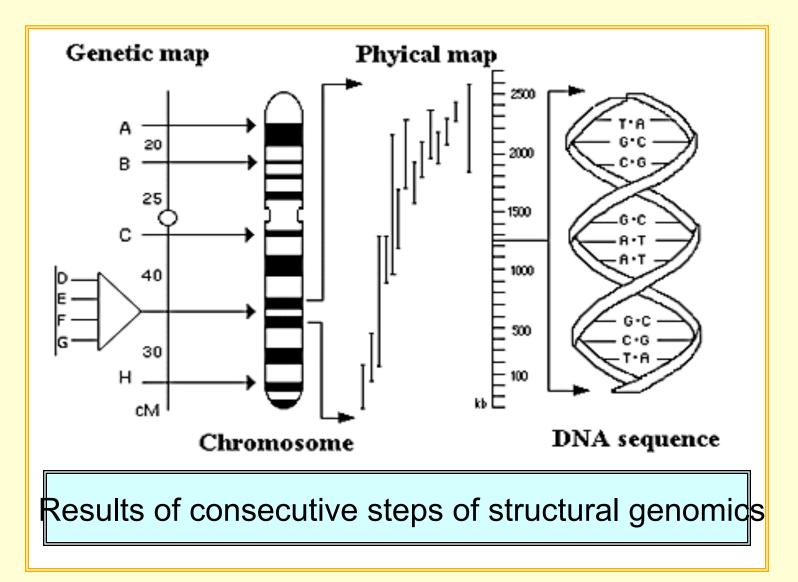


DNA replication: Forming DNA for new cells



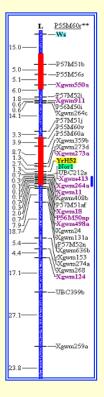
Semi-conservative replication: 2 double-stranded DNA molecules for 2 new cells

Structural genomics includes: genetic mapping, physical mapping and sequencing of entire genomes

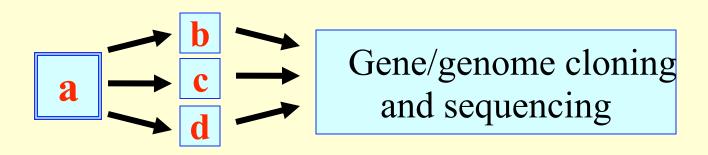


Genome mapping (genetic and physical mapping)

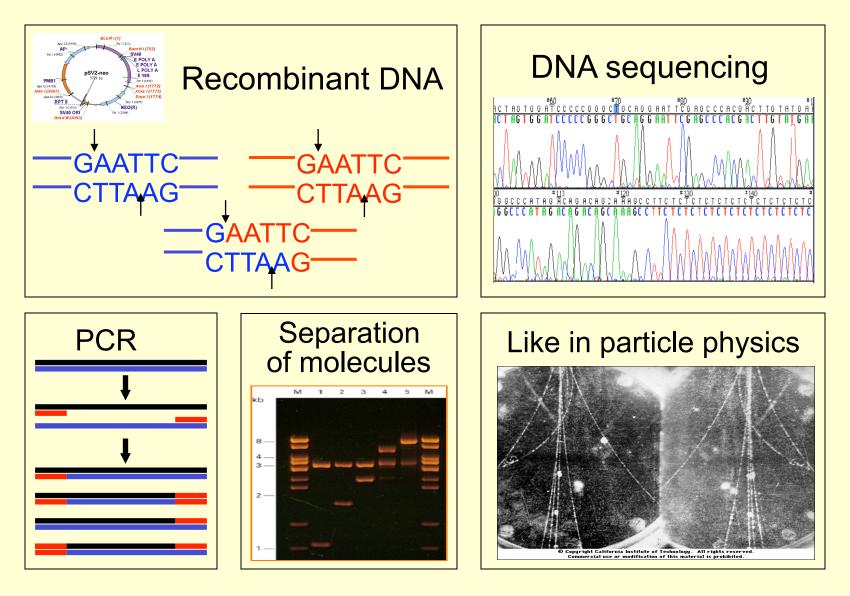
Genome mapping is a major part of genome projects and precondition for most of the genomic applications



a. Positioning of DNA markers → genetic maps
b. Positioning DNA pieces → physical maps
c. Locating *Mendelian* genes relative to markers
d. Mapping quantitative trait loci (QTL maps)



Major technological breakthroughs



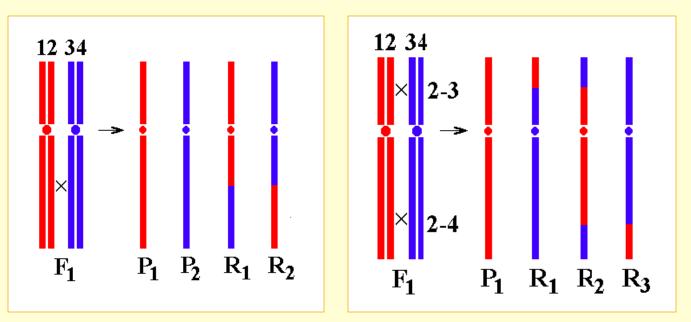
Mendel laws of genetics were discovered based on pairs of contrasting inherited pea *phenotypic* traits

In the progeny of hybrids between carriers of these traits Mendel found **new combinations**, in proportions fitting independent segregation model (Mendel 3rd law). Unlike such situations with *unlinked genes* that belong to different chromosomes, transmission of *linked genes* is not independent.

Studies of linked genes in fruit fly lead Morgan to discovery of *genetic recombination*.

Recombination (crossing-over) is the central event of sex

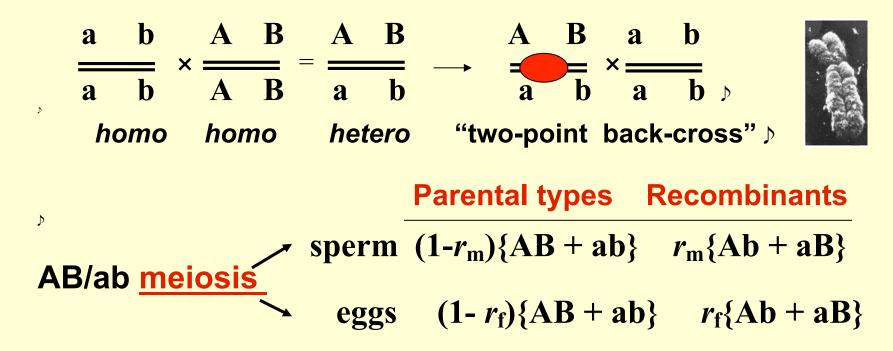
occurs at meiosis, during formation of sexual cells



single-exchange double-exchange meiotic configurations

Recombination: the basis of genetic mapping

<u>Genetic mapping</u>: a procedure of revealing the order of ge nes in chromosomes. It uses a notion of *genetic distance*. B ut in fact, mapping is based on *recombination rates*.



Recombination rate and genetic map distance

Genetic Distance: x = d(a,b) - average number of recombination events in the segment over many meiotic cells

where p_k -prob. of k (k = 0, 1, ...) exchanges in the interval.

Thus
$$x = \sum_{k=0}^{\infty} k p_k$$
, but $r = \sum_{k=0}^{\infty} p_{2k+1}$

recombination rate *r* is the proportion of recombinant gametes

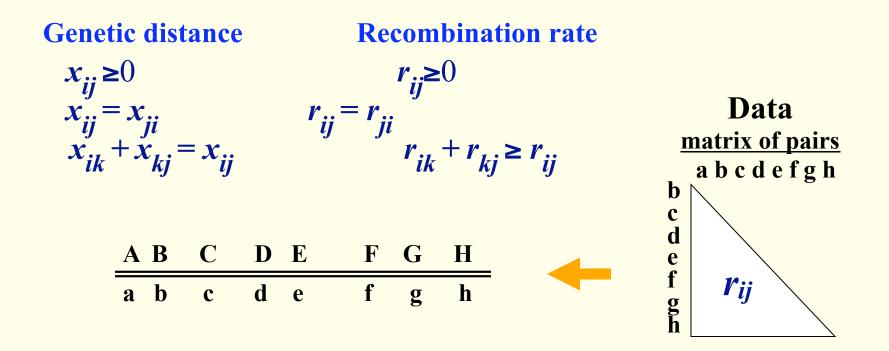
Problem: *observed* vs. *occurred*: Only **uneven exchanges** result in **recombinants** that can be registered.

Constructing dense and reliable genetic maps (ordering the markers)

- The 3^{rd} generation of human map includes ~ $2 \cdot 10^4$ loci
- A maize mapping project (Iowa, 2005) $\rightarrow \sim 10^4 \, \text{loci}$
- 12% (!) of markers on cattle maps proved erroneously positioned

ABCDEFGH... abcdefgh...

Different approaches of multilocus ordering



A Multilocus likelihood analysis: calculates probabilities of orders
B Stepwise mapping by adding a marker at each step ("empiric")
C Treatment of the full matrix of pair-wise distances (our approach)

Constructing dense genetic maps (reliable multilocus ordering)

• **Objectives**

Building multilocus maps (with ~10³ markers/chr)
Verification of the orders (and removing "bad guys")
Building consensus maps

• Method and technology

- Reduction to the Traveler Salesman Problem (TSP)
- Evolutionary strategy optimization algorithms

ES algorithm as a simulation analogue of evolutionary adaptation models

Natural elements	Simulation elements					
<u>Chromosome</u>	Variable value x_i					
<u>Individual,</u> a set of chromosomes	Solution vector $\mathbf{x} = (x_1, \dots, x_n)$					
<u>Mutation,</u> a small change of the	Operator M: $\mathbf{x}^k \rightarrow \mathbf{x}^{k+1}$					
chromosome						
<u>Population</u> , set of individuals	Set P of solution vectors { x ^k }					
<u>Fitness</u> , quantitative characteristic	Criterion value f(x ^k)					
of organism's "fitness" <u>Selection</u> , choosing the fittest individual(s) for the next generation	Operator S : <i>f</i> (x ^k) → min					

ES algorithm for ordering multilocus maps

Let order O_i be considered a 'genotype', and its 'fitness' e defined as: $w_i = l(O_i) = 1/l_i$ (or $-l_i$) 'Progeny' is produced via mutations (changed orders).

h

A 'child' replaces its parent if its fitness is higher. To build the map we need only the (ML) estimates of **pair-wise recombination rates** for all pairs of markers

Building multilocus maps: Sources of complexity

¹/₂ n! orders possible. As a solution we need to find not ust any order with a small total map length. Rather, the goal is to reveal the real order (i.e. *unique solution*)

1

- Sampling variation of r_{ij} , missing data, data errors
- Small sample size relative to the number of markers
- Genetic interference (inter-dependence of cross-overs along the chromosome)

Re-sampling for quality control

The best way to check / verify the map is to show that the obtained solution does not depend on:
(a) sampling data variation, and (b) starting points

By taking <u>sub-samples</u>, one can build **repeated** maps and test whether/where marker ordering remains the same.

Detecting trouble-making markers

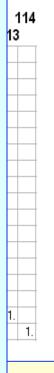
Major unsolved problem: We believe that we can reach the unique solution for a given data set.

However, we have no regular procedure that leads to the best subsets of markers allowing for:

- stable ordering
- combined with highest "map coverage"
- combined with minimal gaps along the map

Removing one marker out of $n \rightarrow n$ ways two markers $\rightarrow \frac{1}{2}n(n-1)$ ways

Initial ordering: **Unstable** neighborhoods **Stable** neighborhoods: after removing problematic markers



Assembling multilocus <u>consensus</u> maps

Objective: Building multilocus maps based on data from different labs and different mapping population s

Requirements:

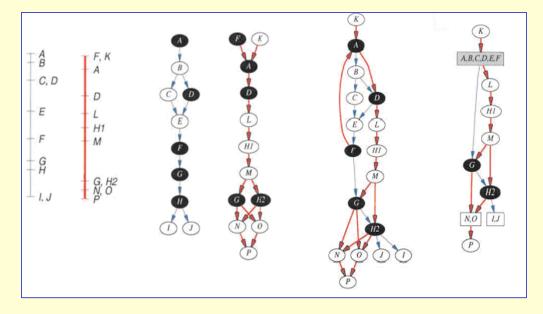
- Shared markers <u>must be in an identical order</u>
- The resulting consensus ordering <u>must be verified</u> via re-sampling

Proposed strategy:

 Re-building maps under the constraint of *identical* order for shared markers, instead of looking for
 shared orders in pictures of previously build maps

Graph-theoretical approach for reconciling two orders, received from different sources

"Giving credit" to individual multilocus maps: Yap et al., *Genetics*, 2003



Our strategy: re-building the maps Re-analysis of raw data by reduction to *synchronous TSP*

→ Parallel discrete optimization for multiple data sets with the foregoing constraint

Consensus mapping (with 100% shared markers) simulated example, 6 families each with n=100

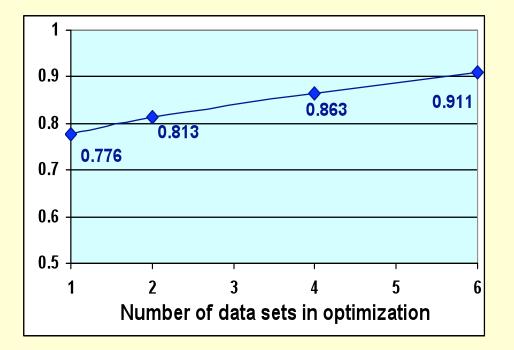
Pop♪	, Mthd ♪		Marker position																		
♪ 1♪	NSO	20)	1♪	2⊅	3⊅	4♪	5♪	6♪	7♪	8)	9⊅	10)	11)	12)	13)	14)	15)	16⊅	17♪	18)	19)
	so	1⊅	2⊅	3Þ	4⊅	5♪	6♪	7♪	8)	9)	10)	11)	12)	13)	14)	15)	16⊅	17⊅	18⊅	19)	20)
° 2♪	NSO	1♪	2⊅	3⊅	4⊅	5♪	6♪	7♪	9)	8)	10)	11⊅	12)	13)	14)	15)	16⊅	17♪	18⊅	19)	20)
	so	1♪	2♪	3⊅	4♪	5♪	6♪	7♪	8)	9)	10)	11)	12)	13)	14)	15)	16)	17♪	18)	19)	20)
° 3⊅	NSO	15⊅	14)	13)	12)	11)	10)	9)	8)	7♪	6♪	5♪	4♪	3⊅	1♪	2⊅	16)	17♪	18)	19)	20)
	so	1⊅	2♪	3⊅	4♪	5♪	6♪	7♪	8)	9)	10)	11)	12)	13)	14)	15)	16)	17♪	18)	19)	20)
^ 4♪	NSO	1⊅	2♪	3⊅	4♪	5♪	6♪	7♪	8)	9)	11)	10)	12)	13)	14)	15)	16)	17♪	18)	19)	20)
	so	1⊅	2♪	3⊅	4♪	5♪	6♪	7♪	8)	9)	10)	11)	12)	13)	14)	15)	16)	17♪	18)	19)	20)
° 5♪	NSO	1⊅	2♪	3⊅	4♪	5♪	6♪	7♪	8)	9)	10)	11)	12)	13)	18)	17	16)	15⊅	14)	19)	20)
	so	1⊅	2♪	3⊅	4♪	5♪	6♪	7♪	8)	9)	10)	11)	12)	13)	14)	15)	16)	17♪	18)	19)	20)
6	NSQ	1♪	2♪	3⊅	4♪	5♪	6♪	7♪	8	9)	10)	11)	12)	13)	14)	15)	16)	17♪	19)	18)	20)
	so	1♪	2♪	3⊅	4♪	5♪	6♪	7♪	8)	9)	10)	11)	12)	13)	14)	15)	16)	17♪	18)	19)	20)

NSO - non-synchronized optimization SO - synchronized optimization

False order True order

Quality of multilocus ordering as a function of the proportion of utilized data sets

(results of tests with six data sets)



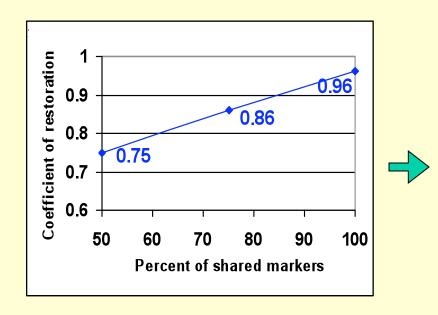
Thus, the information from additional data sets allows reaching better map quality

However, we have a problem \rightarrow

Dependence of the quality of consensus map on the proportion of shared markers

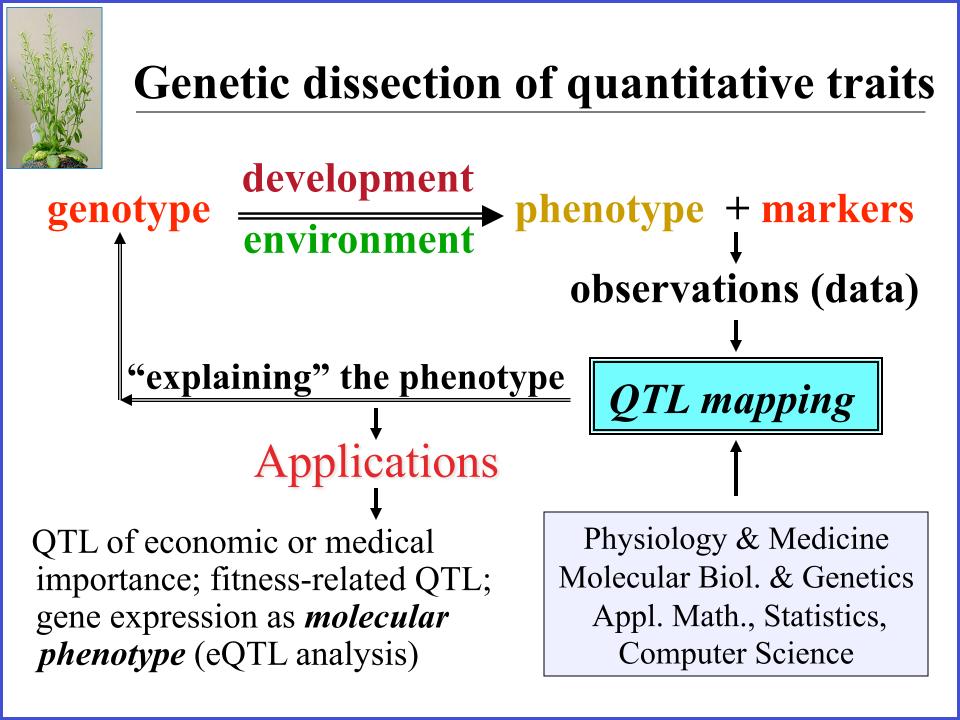
- How to subdivide the entire set into subsets

- How to build the jackknifing procedure



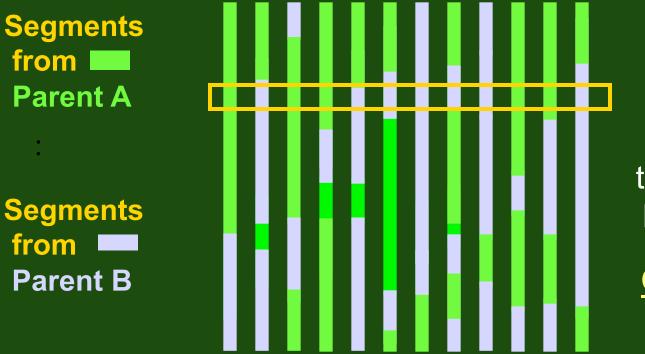
Unsolved problems:

The need in re-structuring the synchronous mapping problem



Analysis of the genetic composition of segregating recombinant genotypes

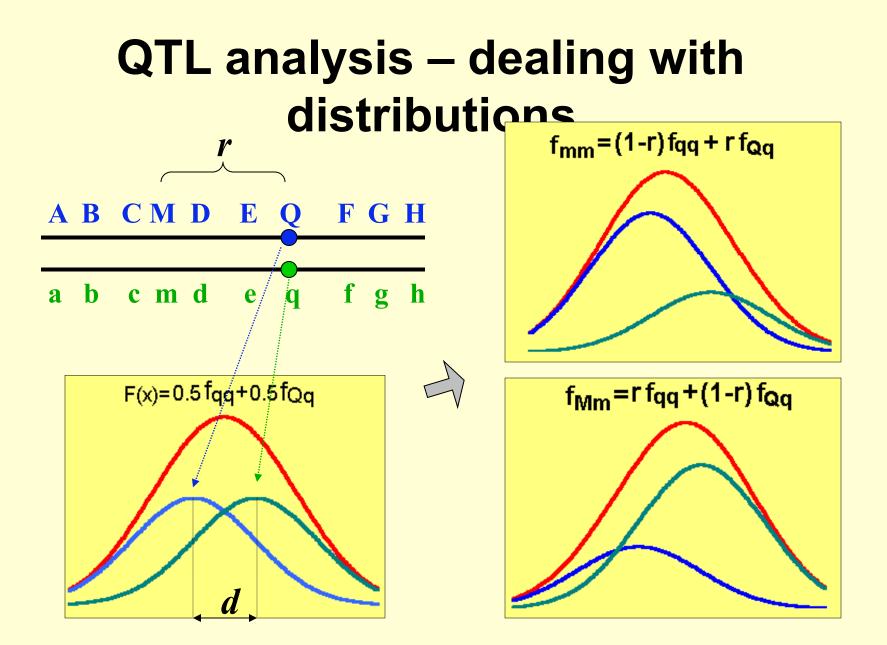
Individual recombinant chromosomes



Looking for loci affecting quantitative traits by using DNA markers

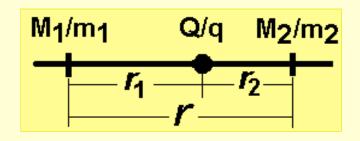
QTL mapping

Beat Keller, Institut für Pflanzenbiologie, Universität Zürich



QTL Interval Mapping

Expected distributions of the trait in the flanking marker groups are mixtures of non-recombinants and recombinants



$$f_{M_1M_2} = [(1-r_1) (1-r_2)f_Q + r_1r_2f_q]/(1-r)$$

$$f_{M_1m_2} = [(1-r_1)r_2f_Q + r_1(1-r_2)f_q]/r$$

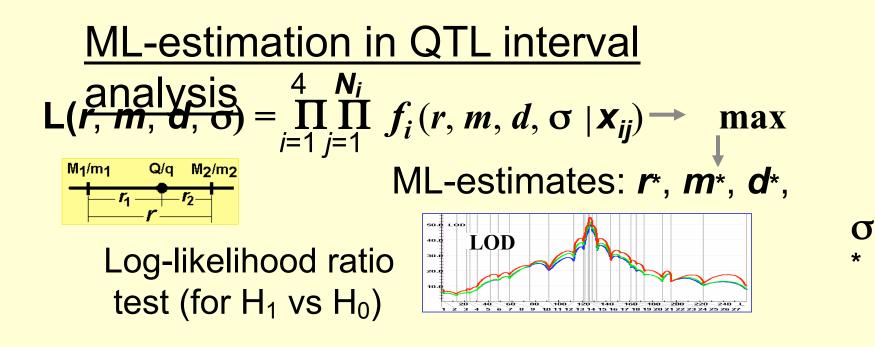
$$f_{m_1M_2} = [r_1(1-r_2)f_Q + r_2(1-r_1)f_q]/r$$

$$f_{m_1m_2} = [r_1r_2f_Q + (1-r_1) (1-r_2)f_q]/(1-r)$$

The model of QTL effect

For additive QTL effect: $x = m + dg_q + \xi$

where $\mathbf{g}_{\mathbf{q}} = -1$ for $\mathbf{q}\mathbf{q}$, and +1 for $\mathbf{Q}\mathbf{Q}$; $E\xi=0$, $\sigma\xi=\sigma$, and $d=(\mu_{\mathbf{Q}\mathbf{Q}}-\mu_{\mathbf{q}\mathbf{q}})/2$, $\mu_{\mathbf{q}\mathbf{q}}=m-d$, $\mu_{\mathbf{Q}\mathbf{Q}}=m+d$



What do one expect from analytical tools ?

To extract maximum mapping information from the experimental data

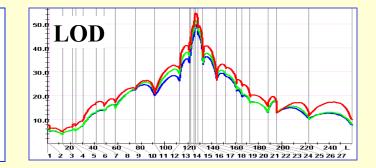
The main questions in QTL analysis:

- QTL detection power (detect the effect when it exists)
- Minimum "false positives" (high significance)
- Accuracy of parameter estimates

```
For single-trait analysis:

ELOD = -\frac{1}{2}N \log (1 - H^2),

H^2 = \frac{d^2}{d^2 + \sigma^2} is "heritability"
```

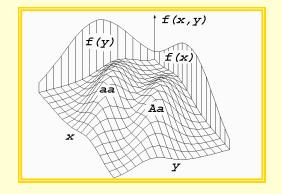


What could be the benefit from a transition to multiple-trait analysis ?

For single-trait analysis:

$$ELOD_x = -\frac{1}{2} N \log(1 - H^2_x)$$

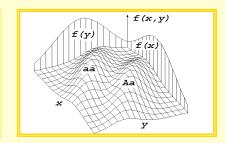
The same holds in two-trait analysis, upon $H^2_x \longrightarrow H^2_{xy}$

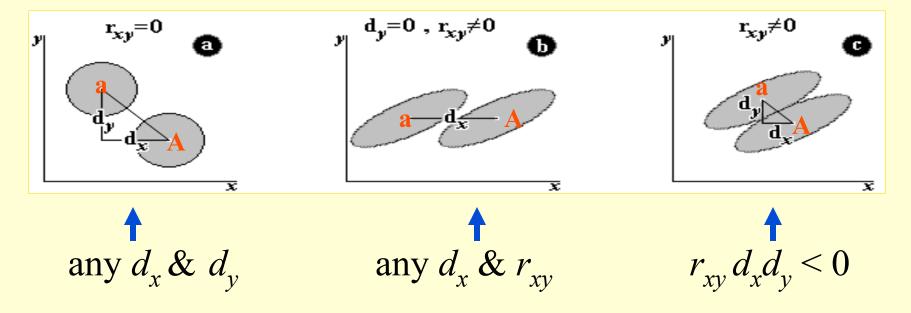


$$H_{xy}^{2} = 1 - \frac{\sigma_{x}^{2} \sigma_{y}^{2} (1 - R_{xy}^{2})}{(\sigma_{x}^{2} + d_{x}^{2}/4)(\sigma_{y}^{2} + d_{y}^{2}/4) - \sigma_{x}^{2} \sigma_{y}^{2} [R_{xy} + d_{x} d_{y}/(4\sigma_{x} \sigma_{y})]^{2}}$$

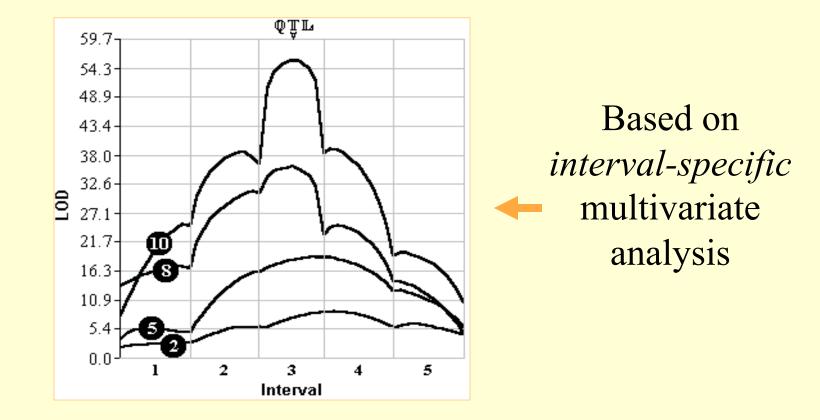
It appears that $H_{xy}^{2} \ge H_{x}^{2} \Rightarrow ELOD_{xy} \ge ELOD_{x}$

The main sources of statistical superiority of two-trait analysis

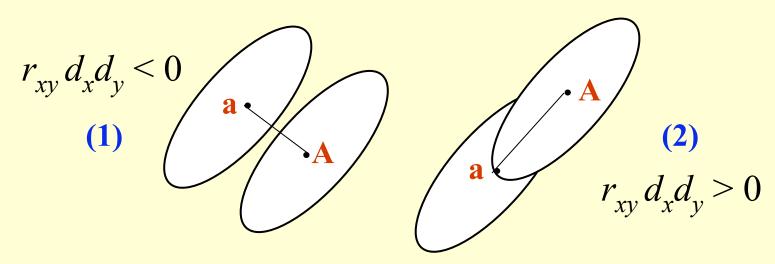




Effect of the number of traits on the efficiency of QTL mapping



Multiple-trait analysis does not necessarily improve the quality of QTL analysis



With the same overlapping of marginal distributions, the bivariate distributions of QTL groups **a** and **A** overlap less in (1) than in (2)

<u>Required</u>: Extension of the above criterion for arbitrary numbers of traits. To allow selecting of sub-sets with improved resolution... (for $n \sim 10^2$ or even 10^4)

Systems Biology

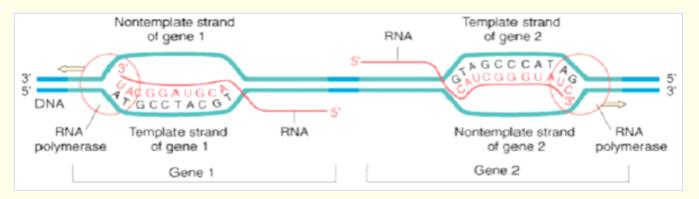
Microarrays for genome expression or *Functional Genomics*

How genes are expressed in the cell ?

Gene sequences encoding for proteins are non-overlapping texts that begin from *start signal* and end by *stop signal*.

DNA transcription mRNA translation protein

A gene can be *transcribed* many times. The resulting mRNA can be *translated* many times \rightarrow many copies of the enzyme. Each synthesized enzyme molecule can *catalyze* the target reaction thousands times \rightarrow strong "signal amplification"



All mRNAs of the genome

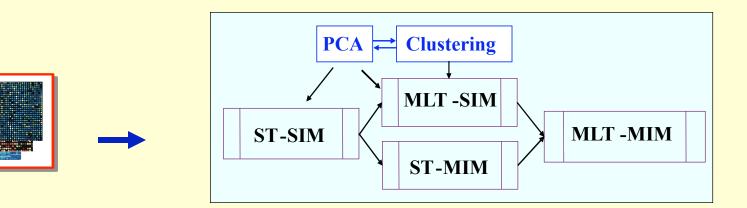
Expression of each gene can be scored as a quantitative trait in a mapping population $(n \sim 10^2 - 10^3)$ and tested for association with DNA markers across the genome $(k \sim 10^2 - 10^5) \rightarrow \text{eQTL mapping}$

<u>The challenge of the problem size</u>: With *N*~10⁴ genes, the number of data points reaches ~10⁸-10¹²

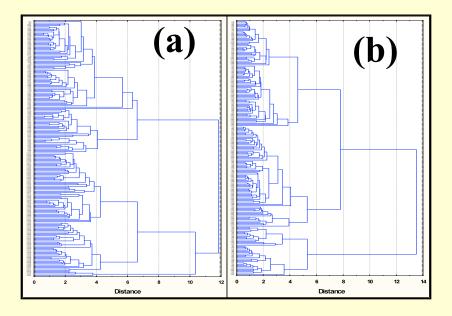
Multiple-trait QTL analysis of the *N*~10⁴ expression traits ? An urgent need in "dimensionality reduction" methods

pathological states, aging, evolution, etc.?

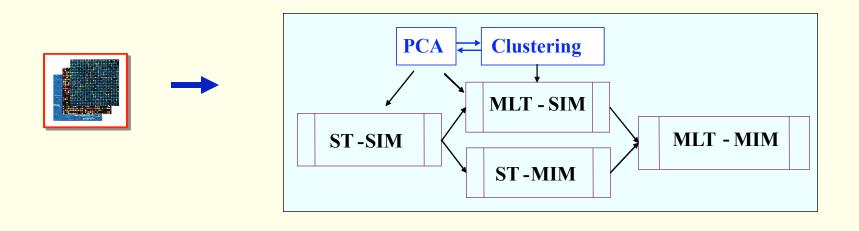
Expression scores as a vector of quantitativ e traits: Dealing with high dimensionality in multiple-trait QTL mapping.

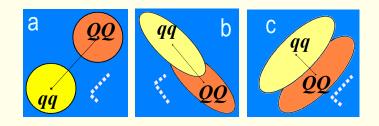


Clustering of the chosen 400 genes: (a) 100+100 up- and down-regulated, (b) 100+100 plus- and minus-correlated to obesity genes



Expression scores as a vector of quantitativ e traits: Dealing with high dimensionality





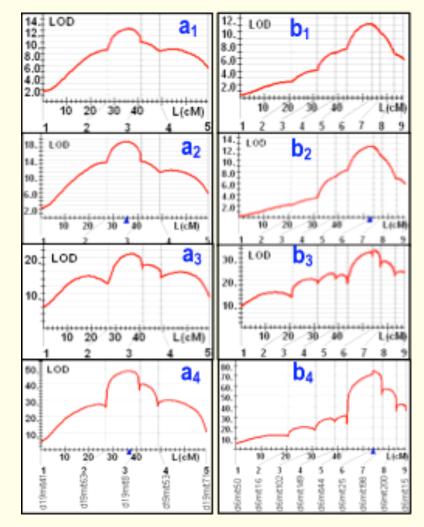
The first PCs may (a & b) or may not (c) correspond to the direction of multivariate QTL effects

Multiple-trait vs. single-trait eQTL mapping *dealing with clusters (on an example of mouse obesity*

Mapping for 2 <u>sub-clusters</u>: (a) up- or down-regulated, (b) positively or negatively correlated with obesity. For these groups, the estimated QTL location L and SD(L) were, for chr. 19 and 6, respectively:

	(a)	(b)
SIM-ST	36.9±6.8	51.7±2.8 cM
MIM-ST	35.0±3.3	52.4±1.9 cM
SIM-MLT	39.6±8.4	52.4±5.9 cM
MIM-MLT	36.7±2.6	53.9±0.7 cM

Using data from Ghazalpour et al., 2005



Summary (what we have been talking about)

- *Genome mapping* reduction to TSP
- *Consensus mapping* synchronous TSP
- QTL mapping
- Multiple-trait QTL analysis looking for best sub-sets
- Microarray analysis expression QTL (eQTL)
- Multi-trait eQTL mapping dimensionality reduction

<u>Acknowledgments</u>

Y. Ronin, D. Minkov, D. Mester,M. Korostishevesky, A. Itzkovich,J. Peng, O. Orion, Z. Frenkel, M. Soller,J. Weller, J. Hillel, J. Beckmann