Simulation photolithographischer Prozesse: Grundlagen, Anwendungspotential und Herausforderungen

Andreas Erdmann Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen





#### Inhalt:

1. Lithographiesimulation am Fraunhofer-Institut IISB Kompetenzen und Projekte

#### 2. Grundlagen

- optische Projektionstechniken in der Chipherstellung
- Modellierung des Abbildungssystem und der Photolackprozessierung
- Bewertung von Lithographieprozessen

#### 3. Anwendungen

Lithograph

- Wirkungsweise und Optimierung von Phase-Shift Masken
- Optimierung von Masken und Beleuchtungsproblemen
- Belichtungen über nichtebenen Wafern

#### 4. Ausgewählte Herausforderungen





# Competencies of the Lithography Group

#### Modeling of Optical Systems

- projection imaging incl. aberrations, spatial coherence, polarization effects in high NA systems
- rigorous diffraction modeling (FDTD, waveguide method): optical and EUVmasks, defects
- interaction of light & photoresist/wafer

# Modeling of Photoresists

- bake : semi-empirical models for kinetic/diffusion processes during baking
- chemical development: flexible rate and surface propagation models
- very efficient models for approximate characterization of photoresist during processing

# Full System Simulation

- calibration of model parameters (esp. resist) with experimental data
- process evaluation (process windows, defectprintability, MEEF, ...), correlation of parameters
- optimization of mask and source geometries with genetic algorithms





## Projects of the Lithography Group







# **Optical Projection Techniques - Chip Fabrication**

feature sizes: 100 nm magnification: 1/4







## Lithographic Process: Overview







## **Performance of Lithographic Processes**

International Technology Roadmap for Semiconductors (ITRS), 2001



prices for lithographic exposure equipment (stepper/scanners)

| g-line: | < 1 Mio \$    |
|---------|---------------|
| i-line: | 1-3 Mio \$    |
| KrF:    | 4-8 Mio \$    |
| ArF:    | 8-18 Mio \$   |
| F2:     | ca. 30 Mio \$ |
| EUV:    | 50-60 Mio \$  |





#### **Basics: Aerial Image Formation in Optical Projection Systems**

#### assumptions:

- infinitesimal thin mask with complex transmission
- projection lens and condenser lens are characterized by complex transfer functions



#### method:

 Fourier-Optics including methods to cope with partial coherence, apodization, wave aberrations, polarization, ...

Lithography Simulation



#### **Basics: Aerial Image Formation in Optical Projection Systems**



# imaging with an optical stepper/scanner

( $\lambda$ =248nm, NA,  $\sigma$ , wave aberrations,...)





Dill-model for lithographic exposures



"blocked" polymer resin -Inhibitor (M) Photoacid generator (PAG)

**Dill equations:** 



Acid (A)



Inhibitor (M)

PAG





#### Dill-model for lithographic exposures (cont.)

#### aerial image



# generation of photoacid in exposed areas

(dose, Dill A,B,C)



A.Erdmann: Simulation photolithographischer Prozesse



acid conc.

post exposure bake (PEB)







#### PEB (cont.)

#### acid conc.



acid catalyzed deprotection of dissolution inhibitors

(PEB time, temperature, diffusionand kinetik-parameters of photoresist)



A.Erdmann: Simulation photolithographischer Prozesse



inhib. conc.

chemical development



# dissolution of resist components with reduced inhibitor concentration





#### chemical development



# chemical development of the photoresist in areas with reduced concentration of inhibitor

(time, temperature, development parameters of the photoresist)





## **Basics: General Simulation Flow**







## **Process Evaluation: Resist Profile**



IISB

A.Erdmann: Simulation photolithographischer Prozesse

Lithography

Simulation

### **Process Evaluation: Process Window**

imaging of 150nm wide dense lines at  $\lambda$ =193nm, NA=0.75, fixed illumination  $\sigma_{in}/\sigma_{out}$ = 0.5/0.7



process window







# Phase Shift Masks (PSM)

Why is a PSM better than a binary mask (BIM) ?

Lithography

Simulation





# Phase Shift Masks (PSM)

Why is a PSM better than a binary mask (BIM) ?

image of a pair of slits



## PSM: How To Realize it in Practice ?

180° phase shift requires optical path difference of  $\lambda/2$ :

mulation





IISB

# **PSM: Practical Performance**

#### mask topography

# SEM-photograph of patterned resist







#### **Basics: Aerial Image Formation in Optical Projection Systems**

#### assumptions:

- infinitesimal thin mask with complex transmission
- projection lens and condenser lens are characterized by complex transfer functions

# method:

- Fourier-Optics including methods to cope with partial coherence, apodization, wave aberrations, polarization, ...
- + application of rigorous diffraction theory







#### PSM and Topography Effects: Advanced Simulation Approach



intensity





#### PSM and Topography Effects: Infinitely Thin Mask Assumption (Kirchhoff Approach)







#### PSM and Topography Effects: Advanced Simulation Approach

geometry







#### PSM and Topography Effects: Consequences

#### optimized geometry of the mask



#### SEM-photograph of patterned mask



# SEM-photograph of patterned resist





from: A. Erdmann, R. Gordon: "Mask Topography Effects in Resolution Enhancement Techniques"





# **PSM Topography Effects: Defects**







# **PSM with Defects: Experiment and Simulation**



cooperation with Infineon: Ch. Friedrich, A. Semmler







# Field Decomposition (QUASI 3D) for More Efficient Mask Topography Simulations



first proposed by Kostas Adam (Uni Berkeley) at SPIE 2001

#### simplification of the problem:

- edges of features on the mask occur only along few directions
- optical projection system covers only few diffraction orders







# Field Decomposition (QUASI 3D) for More Efficient Mask Topography Simulations

example: alternating PSM with defect

Lithography

Simulation





#### **Optical Resolution Enhancement Techniques (RET)**







#### Mutual Optimization of Mask & Source: Variables

#### mask

#### source/illumination



list of rectangles

variables:

position, size and

number of rectangles







#### Mutual Optimization of Mask & Source: Merit Function





critical dimension criterion (ΔCD):

compare the size the printed feature compared to target size

• slope criterion (SC):

increase the slope of the intensity at the edges of the features to be printed





#### Mutual Optimization of Mask & Source: Merit Function (cont.)



• band criterion (BC):

punish image sidelobes which cross the security band

• manufacturability criterion (MC):

count the number of transitions between different neighbored pixels exclude/punish bad rectangles (overlapping, too small areas and distances, ...)







**Optimization Procedure: Genetic Algorithm** 

#### random walk

genetic algorithm

Lithography Simulation



#### **Optimization Procedure: A First Demonstration**

How to create a 140nm×170nm contact hole with a large depth of focus? mask: high transmission attenuated PSM; optics:  $\lambda$ =193nm, NA=0.7, multipole illum.







simulation settings for a typical problem



exposure conditions:

NA=0.68, KrF, 4x,  $\sigma$ =0.45, defocus=-300 nm

mask: 250 nm lines/spaces (1:1)

**wafer:** resist: air (500nm) poly Si-line (w=100 nm, h=175 nm) SiO<sub>2</sub> - substrate





#### general scheme proposed at SPIE Microlithography 2003

Lithography

Simulation





#### comparison with experiment

top-down wafer SEM (from T. Sato, Toshiba)



# top-view of simulated resist profile

**exposure conditions:** NA=0.6, KrF, 4x, σ=0.45, defocus=-200 nm **mask:** 250 nm lines,

mask: 250 nm lines, pitch=1000nm

**wafer:** resist (500nm) poly Si-line (w=140 nm, h=175 nm), 2.5nm SiO<sub>2</sub> on Sisubstrate

Both experiment and simulation show a pronounced footing effect in the vicinity of the shadowed region at the bottom of the poly-Si line





problem: FULL: rigorous simulations of exposures over non-planar wafers are extremely time and memory consuming

limited use for practical applications extension of present approaches to 3D geometries is not possible (memory consumption)

#### proposed solution:

decomposition of a full simulation into

- RENT: real exposure no topography (without topography, application of standard analytical methods)
- FET: flood exposure over topographic wafer (no mask, rigorous simulation but simplified conditions)
- **RENFT** = f(RENT,FET)





**RENFT-concept: side view** 



Lithography A.Erdmann: Simul



**RENFT-concept:** front view







#### 0 100 300-0.4000 80 -TASPAL 250-0.8000 200 60 E 150 z [nm] old 40-1.200 100result 20 -50 1.600 0 -400 -200 120 200 400 80 100 Ó y [nm] x [nm] 2.000 100 300-250 80-RENFT 200 200 E 150 N 60z [nm] result 40-100 - RENFT predicts footing 50-20-0 behavior (including σ-0. -400 -200 200 ò 400 120 100 80 y [nm] x [nm] tendencies) 100 300 -• further investigation are 80 250 difference E 200 -60 necessary to explore the z [nm] 40 - $\times 10$ N 100 limits of the RENFT 20 -50 0 approach -600-400-200 0 200 400 600 80 100 120 x [nm] x [nm]

Lithography Simulation

quantitative evaluation



performance: timing/memory for  $\sigma$ =0.5







#### Selected Future Requirements: Aerial Image Formation

- effective and predictive modeling statistical effects: flare resulting from rough interfaces, depolarization effects, speckle phenomena
- faster and more efficient imaging algorithms for OPC and PSM





#### Selected Future Requirements: Mask and Wafer Topography

- comparison between alternative methods (FDTD, RCWA, waveguide method, wavelet based approaches), further benchmarking and experimental validation
- partial coherent exposures over nonplanar wafers: exploration of the limits of RENFT, alternative modeling approaches
- exploration of the limits of field decomposition, non-Manhatten-geometries, defects, larger areas





#### Selected Future Requirements: Resist Modeling

- efficient methods for solving 3D coupled diffusion/kinetic equations
- finite molecular size effects: impact of resist material on line edge roughness
- mechanical resist properties: pattern collapse for large aspect ratios

Lithography

mulation



H. Cao et al. (Univ. Wisconsin)





#### Selected Future Requirements: General

- combination of simulation and experiment
- application of advanced data analysis and optimization tools to cope with the large amount of simulated and measured data
- improved software architecture: flexibility, combination with other tools ...
- application of simulation tools in education
- modeling of alternative micro- and nanopatterning techniques: direct laser- or e-beam write, proximity printing, nanoimprint, ...





# Acknowledgements

#### Thanks to

- all members of the IISB lithography simulation group: Peter Evanschitzky, Tim Fühner, Thomas Graf, Daniela Matiut, Thomas Schnattinger, Bernd Tollkühn
- our partners at Infineon (Roderick Köhle, Armin Semmler, Christoph Nölscher), AMTC Dresden (Ingo Höllein), IBM (Ron Gordon), Shipley (Stewart Robertson), Zeiss (Michael Totzek, Bernd Kleemann), Toshiba (Takeshi Sato), Sigma-C (Wolfgang Hoppe, Thomas Schmöller), and CNRS LETI (Patrick Schiavone), ...
- funding from: European Commission, German Research Ministry, Bavarian Research Funding



