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Foreword 3

The Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsver-

Prof. Dr. Michael
Hintermüller, Director

bund Berlin e.V. (WIAS, member of the Leibniz Association), presents its Annual Report 2017. It

gives a general overview of the scientific life, as well as an account of the scientific progress made

in 2017. Following six selected scientific contributions that highlight some results presented in

December in Lisbon during the joint workshop of WIAS with the Portuguese Centro Internacional

de Matemática (CIM), see page 121, in the second part, a general introduction is given, followed

by the report of the IMU Secretariat, the essential results of the research groups, and statistical

data.

The most important event in 2017 was—after months of careful preparation—the evaluation of the

Weierstrass Institute by the Senate of the Leibniz Association on July 6 and 7. In its statement

of March 20, 2018, the Senate recommends the Federal Government and the Federal States of

Germany the continued funding of WIAS and its next evaluation regularly in seven years time. It

acknowledges WIAS as an internationally outstanding institution and states that its holistic ap-

proach to the solution of highly relevant mathematical problems represents an important unique

feature. Moreover, WIAS maintains a cutting-edge position in the interlinking of different math-

ematical approaches and develops novel practice-oriented methods. The Senate underlines the

outstanding research and publication output of the institute and praises the intense knowledge

and technology transfer of WIAS via its cooperations with industry.

The high, world-wide appreciation of WIAS is documented especially by the fact that the institute

has been the headquarters of the Secretariat of the International Mathematical Union (IMU) since

2011. Its staff, headed by the WIAS Authorized Representative and IMU Treasurer Prof. Alexander

Mielke, has served mathematics and mathematicians all over the world ever since. In its evalua-

tion statement, the Senate emphasizes its support for the current preparations of the institute to

continue hosting the permanent headquarters of the IMU Secretariat. This decision at the upcom-

ing General Assembly of the IMU in Sao Paulo in 2018 is important not only for mathematics and

the Federal State of Berlin, but also for Germany’s role within the global scientific community.

The evaluation report also very positively highlights the newly implemented Flexible Research Plat-

form, which allows WIAS to flexibly bring in and pursue new research ideas, to support young scien-

tists to become leaders in their fields, and to improve the gender balance in science. With the sup-

port of the WIAS Scientific Advisory Board, the institute implemented the new independent Weier-

strass Group WG 1 Modeling, Analysis, and Scaling Limits for Bulk-Interface Processes, headed by

Dr. Marita Thomas, and the Focus Platform Quantitative Analysis of Stochastic and Rough Systems,

headed by Dr. Christian Bayer and Prof. Peter Friz in RG 6 Stochastic Algorithms and Nonparametric

Statistics. It is planned to further expand this platform in 2018, e.g., by implementing a new W2-S

Professorship (limited to five years) with one of WIAS’s Berlin partner universities.

Like the previous years, 2017 has proven to be a busy and fruitful year for the institute with 104

WIAS Preprints, 149 articles in refereed journals, four collected editions, and three million euros

provided by grants. More details on this and further information can be found in the facts-and-

figures part of this report. All important indicators of scientific productivity and quality again re-

mained on an excellent level, continuing WIAS’s successful track record.

In preparation for a spin-off, three former staff members of WIAS, Dr. Lennard Kamenski, Dr. Klaus

Gärtner, and Dr. André Fiebach, received an EXIST Business Start-up Grant by the Federal Ministry
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4 Foreword

for Economic Affairs and Energy of Germany for their project “MSim – Microelectronic Simulations”.

Dr. Pierre-Étienne Druet and Dr. Shalva Amiranashvili got Temporary Positions for Principal Investi-

gators by the German Research Foundation DFG. The proposal of Dr. Manuel Landstorfer et al. for

a cooperative project in der BMBF Call Mathematics for Innovations as a Contribution to the Ger-

man Energiewende on the topic “Model-based assessment of the life span of aged Li batteries for

second-life use for stationary energy storage” was approved as well, another step to advance the

already very successful research in the field of lithium ion batteries at WIAS; see pages 108ff.

In the framework of the WIAS-coordinated Leibniz Network “Mathematical Modeling and Simula-

tion” (MMS), twenty-eight institutes from all sections of the Leibniz Association work together. In

February 2017, the 2nd Leibniz MMS Days took place at the Technische Informationsbibliothek in

Hanover. The network applied successfully for financial support from the Leibniz Strategic Fund.

The Weierstrass Institute is committed to the implementation of the legally binding German poli-

cies and standards to achieve the goal of gender equality. In 2017, WIAS received the “audit beru-

fundfamilie” (audit job and family) quality seal, which it got in December 2013 for the first time,

for another three-years’ term. New goals in this area were defined to maintain the high standards

of WIAS as an employer who is paying particular attention to respecting a well-balanced work/life

relation.

Besides these important facts and events, WIAS continued its scientific work, further consolidat-

ing its leading position in the mathematical community as a center of excellence in the treatment

of complex applied problems. Several scientific breakthroughs were achieved, and the reader is

cordially invited to follow the Scientific Highlights articles in this report.

WIAS also expanded its scope into new applied problems from medicine, economy, science, and

engineering. Besides the international workshops organized by the institute, the large number of

invited lectures held by WIAS members at international meetings and research institutions, and

the many renowned foreign visitors hosted by the institute, last year’s positive development is

best reflected by the acquisition of grants: altogether, 48 additional co-workers (+ 7 outside WIAS;

Dec. 31, 2017) could be financed from third-party funds.

Twelve international workshops organized by WIAS evidenced the institute’s reputation and its role

as an attractive meeting place for international scientific exchange and collaboration. In addition,

WIAS members (co-)organized numerous scientific meetings throughout the world.

In addition to these “global” activities, on the “local” scale WIAS intensified its well-established

cooperation with the other mathematical institutions in Berlin, with the main attention directed

toward the three Berlin universities. The highlight in this respect was also in 2017 the joint opera-

tion of the Research Center MATHEON “Mathematics for key technologies” located at the Technische

Universität Berlin and currently funded by the “Einstein Foundation Berlin” in the framework of the

“Einstein Center for Mathematics” (ECMath). WIAS is committed to the success of the center by pro-

viding considerable financial and personal resources; several members of WIAS play key roles in

the scientific administration of the MATHEON.

In 2017, also the 25th anniversary of the foundation of the Forschungsverbund Berlin was cel-

ebrated, and MATHEON, the Berlin-based flagship research center, became 15, which was cele-

brated by an impressive event at Urania. The DFG representative indeed highlighted MATHEON as a
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“blueprint” for research centers of excellence, a very encouraging statement motivating the Berlin

mathematicians in their application for the next-generation excellence cluster MATH+ in the cur-

rently running competition within the Excellence Strategy of the Federal Government and the Fed-

eral States of Germany administered by the German Research Foundation DFG. The corresponding

proposal was successfully evaluated in September 2017. Currently, WIAS, together with its cooper-

ation partners in Berlin, prepares the submission of the full proposal.

Besides these major activities, and besides the cooperation with the universities through the man-

ifold teaching activities of its members, WIAS initiated and participated in successful applications

for Collaborative Research Centers, Priority Programs, and Research Training Groups of the German

Research Foundation.

Finally, let me emphasize that WIAS’s primary aim remains unchanged: to combine fundamental

research with application-oriented research, and to contribute to the advancement of innovative

technologies through new scientific insights. The recent achievements give evidence that this con-

cept, in combination with hard, continuing work on scientific details, eventually leads to success.

We hope that funding agencies, colleagues, and partners from industry, economy, and sciences

will find this report informative and will be encouraged to cooperate with us. Enjoy reading...

Berlin, in March 2018

M. Hintermüller
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1.1 Hybrid Quantum-classical Modeling of Electrically Driven

Quantum Light Sources

Markus Kantner and Markus Mittnenzweig

The quantum theory of light started more than a century ago when Max Planck calculated the black

Fig. 1: Quantum key
distribution with single
photons: A secret message
is transferred from Alice to
Bob using the BB84 protocol

body radiation spectrum by assuming that light is emitted in discrete, fundamental units of energy

that we denote today as photons. Based on the same hypothesis, which involves a particle-like

conception of the electromagnetic field that was formerly understood as an entirely wave-like phe-

nomenon, Albert Einstein gave an explanation of the photoelectric effect for which he was awarded

with the Nobel prize in 1921. Subsequently, also wave-like properties of electrons in the form of

matter waves were discovered, which finally lead to the advent of quantum mechanics – a scientific

revolution continuing until the present day. The classical theory of electromagnetism was super-

seded in the following by quantum electrodynamics by the mid of the 20th century, which forms

the basis of our modern understanding of light, matter, and their interaction on a fundamental

level. Soon it was discovered that light can exist in different states, e.g., coherent states (lasers),

thermal states (blackbody radiation) and more exotic states such as squeezed states. However,

it was not until 1977 when H.J. Kimble et al. first demonstrated the emission of a single photon

from a single atom at one time, which gave further evidence that light consists of photons. Such a

single-photon state of the electromagnetic field is a truly non-classical state of light. The radiation

generated by a single emitter shows phenomena like photon anti-bunching [1] (i.e., the photons

emitted by the source tend to keep a distance due to non-classical intensity fluctuations) that can

only be understood in terms of a quantized electromagnetic field theory.

The insights obtained in quantum optics with single photons and entangled photon pairs stimu-

Fig. 2: STM-image of an InAs
semiconductor QD. Picture
taken from Márquez et al.,
Appl. Phys. Lett., 78 (2001),
2309.

lated progress in quantum information theory, which aims at, e.g., using single photons as qubits

– units of quantum information – for optical quantum computing and information processing tasks.

Some of the most promising applications in that field are the various cryptographic methods for se-

cure data transmission based on quantum key distribution (e.g., BB84 protocol, E91 protocol); see

Figure 1. The security of quantum key distribution relies on well-approved quantum mechanical

effects (no-cloning theorem, collapse of the wave function etc.) rather than on assumptions on the

available computational power or the efficiency of algorithms as in classical encryption methods.

The experimental preparation of single-photon states using single atoms requires a huge tech-

nical effort making the technology extremely expensive and inappropriate for real-world applica-

tions. However, with the advent of semiconductor quantum dots (QDs), which are nano-crystalline

structures (see Figure 2) that provide an atom-like three-dimensional confinement of electrons

within solid-state structures, the fundamental research in quantum optics merged with the well-

developed semiconductor technology. Semiconductor QDs are frequently denoted as artificial

atoms as they represent a solid-state analogue of a single atom with tailorable electro-optical prop-

erties. Moreover, QDs can be directly integrated into semiconductor devices and micro-resonators

by standard manufacturing techniques, which has lead to many novel concepts for opto-electronic

and photonic devices including single-photon sources and ultimately downsized QD nanolasers.
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1.1 Hybrid Modeling of Quantum Light Sources 11

Today, semiconductor quantum optics is on the leap from the lab to commercial applications [1]. To

p-contact

n-contact

QDs oxide

QD emission
intensity

map

Fig. 3: Lateral current
spreading in an oxide-
confined single-photon
source leading to unwanted
optical activity of parasitic
QDs [2]

support the development of novel devices, efficient mathematical models and simulation tools are

needed to optimize particular device concepts, provide insights into internal physics, and reduce

the development costs. In particular, for electrically driven devices, which are desirable for practi-

cal applications, the understanding of the current flow is an essential basis for the improvement of

certain device designs. For example, Figure 3 shows a single-photon-emitting diode featuring an

oxide-confined aperture that is intended to efficiently funnel the current (red lines) into the central

QD above the aperture. The experimentally recorded electroluminescence map, however, revealed

optical activity of parasitic QDs far away from the aperture. This counterintuitive phenomenon was

eventually understood on the basis of carrier transport simulations using the van Roosbroeck sys-

tem, which showed a rapid lateral current spreading right above the oxide explaining the obser-

vations [2]. On the other hand, the van Roosbroeck system makes no predictions on the quantum

optical properties of the radiation emitted by the device. Hence, many important figures of merit,

like, e.g., the second-order intensity correlation function related to the above-mentioned photon

anti-bunching effect, are not accessible by the semi-classical transport model. In order to enable

a quantum optical analysis of the device and to simulate electrically driven quantum light sources

on a comprehensive level, one has to combine classical device physics with cavity quantum elec-

trodynamics. In particular, it is required to connect semi-classical semiconductor transport theory

(e.g., using the van Roosbroeck system) with quantum optical models from the theory of open

quantum systems, as illustrated in Figure 4. This was recently achieved in [3] by coupling the van

Roosbroeck system to a quantum master equation in Lindblad form.

The research on quantum-classical hybrid models at WIAS is embedded in the long-term collabo-

rations with experimental groups on single-photon sources (Technische Universität Berlin, funded

by DFG CRC 787 Semiconductor Nanophotonics). It was stimulated by the ERC-Advanced Grant

AnaMultiScale on the analysis of multiscale systems driven by functionals that had a focus on the

derivation of consistent multi-physics models obeying the fundamental laws of non-equilibrium

thermodynamics.

Fig. 4: The hybrid
quantum-classical modeling
approach for quantum light
sources combines
semi-classical carrier
transport theory with
microscopic models for the
QD-photon system

Combining classical device physics with quantum mechanics

The van Roosbroeck system describes the transport of electrons and holes in macroscopic semicon-

ductor structures in a semi-classical approximation. The charge transport is modeled by a system

of reaction-drift-diffusion equations for the electron and hole densities n and p that are cou-

pled to Poisson’s equation describing their self-consistently generated electrostatic potential φ .
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The gradient of the electrostatic potential in turn generates the drift part of the currents. More-

over, electron-hole pairs can be generated or recombine in the semiconductor material modeled

by the net-recombination rate R . In [3], we introduced a hybrid quantum-classical model that self-

consistently couples the van Roosbroeck system with a quantum master equation in Lindblad form,

which is an operator equation describing the evolution of the quantum mechanical density matrix

ρ :

−∇ · ε∇φ = q (p − n + C + Q (ρ)) , (1)

∂t n −
1
q
∇ · jn = −R − Sn (ρ; n, p, φ) , (2)

∂t p +
1
q
∇ · jp = −R − Sp (ρ; n, p, φ) , (3)

∂tρ = −
i
h̄

[H, ρ]+𝒟 (ρ; n, p, φ) . (4)

The model system (1)–(4) is based on a Born approximation separating continuum and confined

carriers where the transport of the freely roaming continuum carriers by drift and diffusion is de-

scribed by the van Roosbroeck system (1)–(3), whereas the bound QD carriers evolve according

to the Lindblad master equation (4). The coupling structure is illustrated in Figure 5. The Lindblad

master equation models the evolution of an open quantum many-body system, where the inter-

nal Hamiltonian dynamics of the quantum system is described by the commutator term ∼ i [H, ρ]

and the dissipative interaction with the macroscopic environment is mediated by the dissipation

superoperator 𝒟 (ρ; n, p, φ) . The latter includes, e.g., capture and escape of carriers from the con-

tinuum states to the confined QD states, spontaneous decay of bound excitons, and the emission

of cavity photons from the system. The dissipative interactions can change the charge of the quan-

tum system, while the Hamiltonian evolution leaves it invariant. The backaction of the quantum

system on its macroscopic environment is reflected by novel coupling terms in the van Roosbroeck

system, which are the scattering rates Sn , Sp describing the loss of continuum carriers in the

continuity equations (2)–(3) for electrons and holes and the (net-)charge density Q(ρ) of the QD

contributing to the right-hand side of Poisson’s equation (1). These macroscopic coupling terms

can be expressed as expectation values of certain Hermitian operators, which depend on the state

of the quantum mechanical density matrix ρ [3].

Fig. 5: Illustration of the
hybrid modeling approach
and the structure of the
couplings between the
classical and the quantum
mechanical subsystem
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Consistency with thermodynamics and GENERIC structure

The consistency with fundamental laws of non-equilibrium thermodynamics is crucial in semicon-

ductor device modeling, in particular, when it comes to multi-physics applications where mathe-

matical models from different fields need to be coupled in a reasonable way. In [3], we showed

that the hybrid model (1)–(4) meets this requirement. The central quantity in the analysis of the

system’s thermodynamic properties is the free energy functional

ℱ(n, p, ρ) = ℱclassical(n, p)+ ℱquantum(ρ)+Uφ(p − n + Q(ρ)), (5)

which comprises the free energy contributions of the quasi-free electrons and holes that are sub-

ject to the van Roosbroeck model, the free energy of the quantum system, and the electrostatic

interaction energy Uφ generated by the Coulomb interaction of the charges in the system. Based

on (5), it can be shown that the system guarantees a non-negative entropy production rate under

direct-current bias conditions, which implies consistency with the second law of thermodynamics.

From a mathematical point of view the thermodynamic consistency of the hybrid system (1)–(4) is

reflected by the fact that our model falls into the class of damped Hamiltonian systems within

the GENERIC framework. GENERIC is an acronym for General Equations for Non-Equilibrium Re-

versible Irreversible Coupling and provides a thermodynamically consistent way of coupling re-

versible Hamiltonian dynamics with irreversible dissipative dynamics. In our case, a damped Ha-

miltonian GENERIC system is defined by a quadruple (Z,ℱ ,K, J) , where Z is the state space, and

ℱ(z) is the free-energy functional on it. The state variable of the system is given by z = (n, p, ρ) .

Moreover, the state space carries two geometric structures, namely the Poisson structure J that

generates the Hamiltonian evolution and the Onsager operator K driving the dissipative dynamics.

Together, the time evolution of the system is given by

∂t z = J (z) Dℱ(z)−K (z) Dℱ(z).

The Onsager operator K(z) is positive and symmetric, whereas J(z) is antisymmetric and satisfies

the Jacobi identity. The second law of thermodynamics is encoded in the positivity and symmetry

of K that follows from microscopic reversibility of the underlying microscopic dynamics. In our

hybrid model, the evolution of the semi-classical part is purely dissipative such that the Poisson

structure only acts on the quantum mechanical part via

J(ρ)A =
i
h̄

[ρ, A].

Inserting A = H + kB T log ρ exactly gives the Hamiltonian part in (4). The quantum-classical

coupling of (1)–(4) is generated by an Onsager operator, i.e., there exists a positive, symmetric

Kcoupling(n, p, ρ) such that(
Sn, Sp,𝒟

)T
= Kcoupling(n, p, ρ) · Dℱ(n, p, ρ).

The Onsager operator K(ρ) was originally introduced in [4], where it was shown that every Lind-

blad master equation satisfying detailed balance is a damped Hamiltonian system in the sense of

GENERIC. The operator K(ρ) defines a transport metric on the space of density matrices and gen-

erates a non-commutative analogue of optimal transport distances for probability distributions.
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Application

The system (1)–(4) is applied to the numerical simulation of an electrically driven single-photon
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Fig. 6: Annealing scheme for
the numerical simulation of
carrier transport at
cryogenic temperatures [5]

source shown in Figure 7(a), where a single QD is embedded in the intrinsic region of a p-i-n diode.

In the case of a leaky resonator, the light-matter interaction is weak, and the quantum system can

be described by a purely electronic Hamiltonian. We consider a QD that can be occupied by up to

two electrons and two holes, such that the model comprises several multi-particle states including

bright and dark excitons and the biexciton. The device geometry, transport parameters, capture

rate models, and further details can be found in [3]. The extremely low operation temperatures of

quantum light sources cause severe convergence issues for standard numerical routines that can

be handled by using the annealing technique [5] illustrated in Figure 6. The simulation results for a

pulsed excitation of the device show a biexciton cascade leading to a single-photon emission from

the bright exciton state on the order of nanoseconds after the excitation pulse; see Figure 7(b). The

numerical results are found to be in good agreement with experimental observations.

Fig. 7: The pulsed electrical
excitation of the device leads
to the emission of non-
classical light via the
biexciton cascade

Conclusion

By combining classical device physics with microscopic models from semiconductor quantum op-

tics, we obtained a hybrid quantum-classical model system that can be applied to the simulation

of electrically driven quantum light sources. The well-behaved thermodynamic properties of the

combined model system are reflected by the underlying mathematical structure.
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1.2 Models and Numerical Methods for Electroosmotic Flows

Jürgen Fuhrmann, Clemens Guhlke, Alexander Linke, Christian Merdon, and Rüdiger Müller

Introduction

Liquid electrolytes are fluids containing electrically charged ions. Many electrochemical energy

conversion systems like fuel cells and batteries contain liquid electrolytes. In biological tissues,

nanoscale pores in the cell membranes separate different types of ions inside the cell from those

in the intercellular space. Nanopores between electrolyte reservoirs can be used for analytical ap-

plications in medicine. Water purification technologies like electrodialysis rely on the electrolytic

flow properties.

This article gives an overview of recent contributions by WIAS researchers to the mathematical
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Fig. 1: Accumulation of
negative ions at positively
charged electrode surface

modeling and numerical simulation of coupled electrolyte flow and ion transport, referring the

reader to the corresponding publications for the details.

Improved continuum models

Electroosmotic flows are characterized by the presence of an electric field that excerts a net force

on the fluid molecules in regions where the local net charge due to the present ions is nonzero. In

addition to advection by the fluid, the dissolved ionic species molecules in electrolytes move rel-

ative to the barycentric fluid velocity due to diffusion induced by gradients of chemical potentials

and due to applied electric fields. A counterforce to the motion of dissolved molecules is due to

elastic interactions between the ions and the solvent.

Fig. 2: Already for moderate
applied voltages, the
classical Nernst–Planck
model predicts unphysically
high ion concentrations at
an ideally polarizable
electrode

Classical models for electrolytes rely on a dilute solution assumption. In this case, the ion-solvent

interaction can be neglected, and the ion volume is set to zero. As a consequence, there is no

mechanism to limit the accumulation inside narrow boundary layers that screen the electric field

at electrodes or charged walls; see Figures 1, 2. The limitations of classical models are well known,

and several remedies for these shortcomings have been suggested. In recent contributions [1, 2],

WIAS scientists from RG 7 Thermodynamic Modeling and Analysis of Phase Transitions established

a sound theoretical basis for improved continuum models for electrolytes, based on the second law

of thermodynamics and consistent coupling of the transport equations to the momentum balance.

In a given bounded domain � , and with appropriate initial and boundary conditions, the sys-

tem (1a)–(2c) on the following page describes the isothermal evolution of the concentration of

N charged species c1 . . . cN with charge numbers z1 . . . zN dissolved in a solvent of concentra-

tion c0 . As a considerable simplification of the model, it is here assumed that the mass density

of the solvent and all ionic species is equal. The electric field is described as the gradient of the

electrostatic potential φ . The barycentric velocity of the mixture is denoted by Eu , and p is the

Annual Research Report 2017

https://www.wias-berlin.de/~fuhrmann/?lang=1
https://www.wias-berlin.de/~guhlke/?lang=1
https://www.wias-berlin.de/~linke/?lang=1
https://www.wias-berlin.de/~merdon/?lang=1
https://www.wias-berlin.de/~mueller/?lang=1
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pressure. The following equations are considered:

−ν1Eu + ρ(Eu · ∇)Eu +∇ p = q∇φ , (1a)

∇ · Eu = 0 , (1b)

∂t ci +∇ · (Ni + ci Eu) = 0 (i = 1 . . . N ) , (1c)

−∇ · (ε∇φ) = F
N∑

i=1

zi ci = q. (1d)

Equation (1a) together with (1b) comprise the incompressible Navier–Stokes equations for a fluid

solvent

solvated

free

solvated anion

cation

Fig. 3: Constituents of the
liquid electrolyte are the free
solvent molecules and
solvated ions, i.e., larger
complexes that are built
from a center ion and a
solvation shell of bounded
polar solvent molecules

of viscosity ν and constant density ρ . In the general case, where molar volumes and molar masses

are not equal, ρ will depend on the local composition of the electrolyte. In regions where the space

charge q = F
∑N

i=1 zi ci ( F being the Faraday constant) is nonzero, the electric field ∇φ becomes

a driving force of the flow. The partial mass balance equations (1c) describe the redistribution of

species concentrations due to advection in the velocity field Eu and molar diffusion fluxes Ni . The

Poisson equation (1d) describes the distribution of the electrostatic potential φ under a given

configuration of the space charge. The constant ε is the dielectric permittivity of the medium.

The fluxes Ni , the chemical potentials µi , and the incompressibility constraint for a liquid elec-

trolyte are given by

Ni = −
Di
RT

ci (∇µi −∇µ0 + zi F∇φ) (i = 1 . . . N ) , (2a)

µi =
1
c̄
(p − p◦)+ RT ln

ci
c̄

(i = 0 . . . N ) , (2b)

1 = v0c0 +
N∑

i=1

(κi + 1)v0ci . (2c)

The generalized Nernst–Planck flux (2a) combines the gradients of the species chemical potential

Fig. 4: Physically reasonable
ion concentrations at an
ideally polarizable electrode
in equilibrium for the
generalized Nernst–Planck
flux (2a)

µi , the solvent chemical potential µ0 , and the electric field ∇φ as driving forces. In this equation,

Di are the diffusion coefficients, R is the molar gas constant, and T is the temperature. Equation

(2b) is a constitutive relation for the chemical potential µi depending on the local pressure and

concentration. Here, p◦ is a reference pressure, and c̄ =
∑N

i=0 ci is the summary species concen-

tration. In (2c), a simple model for solvated ions is applied. In polar solvents like water, ions carry

a shell of electrically attracted solvent molecules; see Figure 3. Given the molar volume v0 of the

solvent, the volume of the solvated ion with κi solvent molecules in the solvation shell is set to

(κi + 1)v0 . The resulting model limits the accumulation of ions in the polarization boundary layer

to physically reasonable values; see Figure 4.

Comparing the constitutive equations (2a)–(2c) to the classical Nernst–Planck flux

Ni = −Di

(
∇ci + zi ci

F
RT
∇φ

)
(i = 1 . . . N ), (3)

we observe that in (3) the ion-solvent interaction due to the difference µi − µ0 is missing. More-

over, in (3) a material model is implicitly assumed that neglects the pressure dependence of µi ,

which is inappropriate in charged boundary layers.
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Numerical methods

The numerical solution of the coupled system uses a fixed-point iteration scheme that is based on

discretization methods for the subproblems recently developed by WIAS researchers of the RG 3

Numerical Mathematics and Scientific Computing.

A two-point flux finite volume method on boundary-conforming Delaunay meshes is used to ap-

proximate the Nernst–Planck–Poisson part of the problem. It was inspired by the successful Schar-

fetter–Gummel box method for the solution of charge transport problems in semiconductors. For

a recent overview of this method, see [3]. The method was initially developed for drift-diffusion

problems in non-degenerate semiconductors whose fluxes are structurally equivalent to (3).

In order to adapt the Scharfetter–Gummel scheme to take into account the displacement of the sol-

xK

xL

Kai;K

L

ai;L

Ni;KL

Fig. 5: The modified
Scharfetter–Gummel
scheme: Neighboring finite
control volumes K , L with
collocation points xK , xL
hold activity values aK , aL
defining the normal flux
NK L =

D
γK L

B(−δkl )aK−B(δkl )ai,L
|xK−xL |

,
where γK L is an average of
the activity coefficients, and
δK L =

zF
DRT (φK − φL ) is

proportional to the local
electric force. B(ξ) = ξ

eξ−1
is the Bernoulli function.

vent, the generalized Nernst–Planck flux (2a) is reformulated in terms of activities

ai = exp
(
µi−µ0

RT

)
[4]

Ni = −Di
1
γi

(
∇ai + ai zi

F
RT
∇φ

)
i = 1 . . . N . (4)

The quantities γi =
ai
ci

are the activity coefficients. They fulfil a nonlinear system of equations

depending on species activities and pressure that can be obtained by an algebraic manipulation

of (2b) and (2c). The modification of the Scharfetter–Gummel scheme is based on the similarity of

the expressions (4) and (3); see Figure 5.

The resulting time-discrete finite volume scheme guarantees positivity of discrete solutions and

exact zero fluxes under thermodynamic equilibrium conditions. It leads to large nonlinear discrete

systems that are solved by Newton’s method.

Pressure-robust, divergence-free finite elements for fluid flow. A fundamental property of the

Stokes and Navier–Stokes equations consists in the fact that — under appropriate boundary con-

ditions — the addition of a gradient force to the body force on the right-hand side of the momentum

balance (1a) leaves the velocity unchanged, since it can just be compensated by a change in the

pressure. Classical mixed finite element methods for the Navier–Stokes equations do not preserve

this property. As a consequence, the corresponding error estimates for the velocity depend on the

pressure. Moreover, the divergence constraint of the discrete solution is fulfilled only in a certain

discrete finite element sense. This behavior causes problems when coupling the flow simulation

to a transport simulation using finite volume methods, because the maximum principle for the

species concentration is directly linked to the divergence constraint in a finite volume sense [5].

Pressure-robust mixed methods, first introduced in [6], are based on the introduction of a diver-

gence-free velocity reconstruction 5 into the discrete weak formulation of the flow problem. As-

suming an inf-sup stable pair of velocity ansatz space Vh and pressure ansatz space Qh , the dis-

cretization of the Stokes equation (provided here for simplicity) reads as: find ( Euh , ph) ∈ Vh × Qh

Annual Research Report 2017



18 1 Scientific Highlights

such that ∫
�
ν∇ Euh : ∇ Evhdx +

∫
�

p∇ · Evhdx =
∫
�

Ef · (5 Evh)dx for all Evh ∈ Vh ,∫
�

qh∇ · Euh dx = 0 for all qh ∈ Qh .

This formulation differs from that of the classical mixed methods only in the introduction of a re-

construction operator5 with the properties

(i): ||5Evh − Evh || small in a certain norm,

(ii): Ewh discretely divergence free
(∫
� qh∇ · Ewh dx = 0 for all qh ∈ Qh

)
⇒ ∇ · (5 Ewh) = 0 .

From (i) it follows that the error introduced into the method by the use of the reconstruction oper-

ator does not disturb the asymptotic convergence rate of the method. Property (ii) states that the

reconstruction of the discretely divergence-free solution uh is pointwise divergence free, which is

the prerequisite for mass conservative coupling of fluid flow and species transport guaranteeing

positivity and maximum principle of species concentrations. Furthermore, the resulting velocity

error estimate is independent of the pressure. Hence, even for a complicated structure of the pres-

sure as in the case of electolyte flows, a good velocity approximation can be obtained without the

need to resort to high-order pressure approximations. This leads to a significant reduction of de-

grees of freedom numbers necessary to obtain a given accuracy of the velocity. The action of 5 on

a discrete velocity field can be calculated locally, on elements or element patches. Therefore, its

implementation leads to low overhead in calculations.

For an overview of this method, and the role of the divergence constraint in flow discretizations,

see the survey article [7].

Coupling strategy. The coupling approach between the Navier–Stokes solver and the Nernst–

Planck–Poisson solver is currently based on a fixed-point iteration strategy:

Set Euh , ph to zero, calculate initial solution for (1d)–(2c);

while not converged do

Provide φh , qh to Navier–Stokes solver;

Solve (1a)–(1b) for Euh , ph ;

Project 5 Euh , ph to the Poisson–Nernst–Planck solver;

Solve (1d)–(2c);

end

The projection of 5Eu to the finite volume solver includes an integration over interfaces between

neighboring control volumes of the finite volume method [5]. Sufficient accuracy of this step guar-

antees that the projected velocity is divergence free in the sense of the finite volume approxima-

tion. As a consequence, in the case of electroneutral inert transported species, the maximum prin-

ciple for species concentrations is guaranteed.
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Simulation results

The discretization methods and the coupling strategy introduced above are implemented in the

framework of the toolbox pdelib that is developed at WIAS.

We consider a straight nanopore with negatively charged walls. When a potential difference in lon-

gitudinal direction is imposed, there is an electroosmotic flow in a binary electrolyte of monovalent

ions. The charged walls attract positive ions and repel the negative ones, creating a boundary layer

in the vicinity of the walls where the space charge q is nonzero. According to the momentum bal-

ance (1a), the electric force acts only in these boundary layers, driving the fluid through the pore.

If the pore is wide enough, the electrolyte is locally electroneutral in the center of the pore. Then,

no force is present in the center region, leading to a velocity profile similar to a plug flow (Figure 6).

Fig. 6: Electroosmotic flow
through a straight nanopore
with charged walls for an
imposed potential difference
of 0.5 V in longitudinal
direction. Top left:
distribution of the
electrostatic potential. Top
right: velocity field (arrows)
and pressure (color). Bottom
row: positive resp. negative
ion concentration.

For the considered problem, the classical Helmholtz–Smoluchowski theory predicts the electroos-

motic velocity in a sufficiently wide pore as veo = −
εEx
η ζ , where Ex = ∂xφ is the longitudinal

component of the electric field on the center line of the pore, and ζ is the zeta potential. In the

present case, the zeta potential is defined as the potential difference between the electroneutral

region in the center of the pore and the pore wall. It depends on the surface charge of the wall

and the boundary layer structure and is not given by the Helmholtz–Smoluchowski theory itself.

Figure 7(a) on the following page demonstrates how, for increased pore width, the numerically

calculated velocity approaches the predicted value.

The influence of the solvation effect in the improved model is demonstrated in Figure 7(b). In-

creased values of the solvation number κ lead to a widening of the space charge regions (as

visible as well in Figure 4), and also to an increase of the zeta potential. As a consequence, the

electroosmotic velocity increases proportionally with the solvation number.
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Fig. 7: Left: comparison of
simulation results with the
classical asymptotic
Helmholtz–Smoluchowski
theory. Right: An increase of
the solvation number κ
widens the boundary layers
where the electric force acts
and thereby increases the
flow velocity in the center of
the pore.
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1.3 Mathematical Modeling, Simulation, and Optimization

using the Example of Gas Networks

Holger Heitsch and Nikolai Strogies

Introduction

The question for the capacity of a given gas network, i.e., determining the maximal amount of gas

Fig. 1: German H-gas (red)
and L-gas (black) network
system. The arrows indicate
entry and exit nodes.
(Source: OGE)

that can be transported by a given network, appears as an essential question that network opera-

tors and political administrations are regularly faced with. Discussing the capacity of gas transport

networks obviously involves the fact that all nodes are connected. Indeed, if one changes the pres-

sure of some inflow or outflow, then this change can affect large parts of the network. This is due to

the fact that there is usually no isolated capacity of a pipeline within the network. These two issues

(capacity and connectivity) arise because of the interdependency between gas flow and pressure.

This integral behavior makes the main difference between gas networks and other networks, as

for example, telecommunication networks, in which there is a certain bandwidth available for each

link. As a consequence, classical network flow theory does not suffice to describe the behavior of

gas networks. Figure 1 shows the H-gas (high-calorific) and L-gas (low-calorific) network system of

Germany, owned by Open Grid Europe (OGE).

In the context of the liberalization paradigm for gas markets, regulatory authorities have sepa-

rated the natural gas transmission from production and services. Accordingly, network operators

are solely responsible for the transportation of gas, and gas traders only need to specify or nomi-

nate where they want to inject gas, at so-called entry points, or extract gas (demands), at so-called

exit points. An efficient handling of gas transportation induces a number of technical and regu-

latory problems, also in the context of coupling to other energy carriers. As an example, energy

transporters are required by law to provide evidence that within the given capacities all contracts

defining the market are physically and technically feasible. Given the amount of data and the po-

tential of stochastic effects (such as random demand and uncertain friction along the pipes), this

is a formidable task by itself, regardless of the actual process of distributing the proper amount of

gas of the required quality to the customer.

Network operation under uncertainty

Presently, the reliability of the gas network operation depends on the accuracy of calculating the

transport capacity and on the security of supply. This concern is called nomination validation, i.e.,

the determination whether given nominations of all entry and exit flows are technically and phys-

ically feasible with the available infrastructure (see [4]). This challenge is further complicated by

the uncertainty in the feasibility check due to the coverage of future demand. When ensuring se-

curity of gas supply for end consumers, network operators have to quantify the coverage of uncer-

tain future demand. The amount of gas that enters the network depends on volatile prices, and
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the amount of gas that exits the network is influenced by ambient temperature changes. Figure 2

displays two types of typical behavior of the gas exit flow demand with respect to temperature

variation. The data was provided by OGE based on historical observations for one decade.

Fig. 2: Left: typical sigmoidal
relation between exit gas
demand and temperature.
Right: uniform-like
distribution, i.e., almost no
temperature dependency at
all.

Such historical measurements are useful for a statistical fitting that allows to represent future

demand by means of stochastic distributions. In [4, Chapter 13], a detailed description was given

for estimating continuous distributions (e.g., normal and normal-like distribution) from empirical

observations based on the Kolmogorov distance. Therefore, temperature classes of intervals were

identified, small enough to neglect the temperature dependence of demands within the interval.

Algebraic model for passive networks. Flow and pressure in gas grids are essentially governed

by physical conservation laws. Adopting stationarity, these laws can be modeled by linear and non-

linear equations, derived from Kirchhoff’s first and second laws and resulting in equality systems

given by multivariate polynomials of degree of at most 2.

pressure p

demand ξ

exit

entry

flow q

roughness Φ

nodal flow balance:
pressure bounds:

pressure drop:

∑
(j,i)∈E

qji −
∑

(i,j)∈E
qij = ξipmin ≤ p ≤ pmax

(pi)
2 − (pj)

2 = Φijqij |qij |

Fig. 3: Kirchoff’s laws (mass flow and
momentum conservation) as well as limiting
conditions in a passive network:

p - pressure variables
q - flow variables
ξ - demand vector
8 - roughness coefficients

In a passive gas network, feasibility of a nomination is equivalent to the existence of a pressure-

flow profile fulfilling Kirchhoff’s laws and meeting nodal bounds on the pressure. In [2], it is shown

that pressure and flow variables can be eliminated. For a general characterization of the set of

all capacities that can be realized, a mix of explicit and implicit conditions is considered where

the implicit indeterminates correspond to the number of fundamental cycles in the network. On

the other hand, if the network topology is represented by just a tree, then only explicit feasibility

constraints remain. What follows is that in the tree case the check, whether a nomination vector

ξ is feasibility or not, corresponds to verifying an explicit system of inequalities. Therefore, all

network parameters, namely the pressure limits and roughness coefficients 8 , must be given.
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The latter typically depend on friction coefficients λ as well as on the geometry of the pipe, the

Reynolds number of the gas, and even on pressure. Unfortunately, in some situations the friction

of the pipe must be viewed as uncertain as well. But in contrast to the demand, the uncertainty is of

different nature as statistical information is hardly available directly. The next section is therefore

concerned with an approach for estimating friction coefficients in gas pipelines.

Obtaining statistical information on the friction coefficients

The main problem concerning measurements of operating pipelines is the fact that distributed In

Exit 2 Exit 1

`(1) = 10.000

`(2) = 20.000`(3) = 30.000

Fig. 4: Sketch of a basic
passive network

information on parameters at fixed times, like the volume flow or the friction coefficient at every

position along the pipe, are typically not available. The natural remedy for such problems is to

focus on quantities that are measure- or observable and to draw conclusions about the quantity

that one is actually interested in. This so-called inverse problem was dealt with in [6] and aims

at identifying the friction coefficient based on measurements of pressure or volume flow at the in-

and outlets of a network.

In order to identify, instead of merely pipe-wise constant coefficients, even distributed information

on this parameter, the consideration of time-dependent models for the transport of natural gas

becomes relevant. Within a single pipe, the dynamic transport of natural gas can be modeled by a

system of balance laws and associated initial and boundary conditions given by

ρt + qx = 0,

qt + a2ρx = −λ
q|q|
ρ
,

ρ(0, x) = ρ0(x), q(0, x) = q(x),

q(t, xL ) = qL (t), q(t, xR) = qR(t),

while for networks the coupling conditions from Figure 3 have to be considered as well. Here ρ , q ,

p denote density, volume flow, and pressure of the pipe, and xL , xR refer to its left and right ends.

The system represents a simplification of the compressible Euler equations and provides a useful

time-dependent description of the underlying physical process. Moreover, it is strongly related to

the questions of capacity maximization, since steady broad solutions of the latter model form the

solutions to the time-independent problems [5].

Considering a minimum-least-squares formulation of the identification problem of the pipe-wise

constant friction coefficients in small networks as depicted in Figure 4, suitable numerical meth-

ods can be employed to estimate it computationally (see [6]).

Besides the sole identification of the friction coefficient, associated statistical information is of

particular interest in applications of optimization subject to probabilistic constraints. Since the

friction coefficient is the result of a technical process, it can not be considered to be a common

property of every pipeline. Instead, the friction coefficient is assumed to be distributed according

to some probability distribution. While producers provide an estimate of this distribution called

prior, Bayes’ theorem and measurements of quantities that allow for an identification of the fric-

tion coefficient make these initial guesses more precise. In the particular example of pipe-wise

constant friction coefficients and density being measured at the outlets of a network at a finite
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number of times, this so-called Bayes inversion is based on

πPosterior (λ|ρ
d ) ∝ πDataLikelihood (𝒪(λ)− ρd )πPrior (λ).

For given measured data ρd , the probability distribution of the friction coefficient is proportionalIn

Exit 2
Exit 1

0.01814 0.01815 0.01816 0.01817 0.01818 0.01819 0.0182

0

100

200

300

400

500

600

700

800

Pipe 1

0.01814 0.01815 0.01816 0.01817 0.01818 0.01819 0.0182

0

100

200

300

400

500

600

700

800

Pipe 3

0.01814 0.01815 0.01816 0.01817 0.01818 0.01819 0.0182

0

100

200

300

400

500

600

700

800

Pipe 2

Fig. 5: Pipe-wise constant:
histogram of the samples
from a Markov chain Monte
Carlo sampling for a
truncated normally
distributed prior and
normally distributed
measurement error

to the product of the measurement error πDataLikelihood , also referred to as data likelihood, and

the initial guess how λ is distributed in different pipes πPrior (λ) . The observation operator 𝒪(λ)
represents the evaluation of solutions to the state system associated with λ at points and/or times

that correspond to the measured data and can be chosen in a problem-dependent fashion. In case

of distributed friction coefficients that are elements of some function space, the probabilities π

have to be replaced by associated measures and, by Bayes’ theorem, the Radon–Nikodym density
dπPosterior

dπPrior
(λ) is proportional to πDataLikelihood (𝒪(λ)− ρd ) . In order to circumvent the evaluation

of the proportionality factor, numerical methods like the Markov chain Monte Carlo method are em-

ployed to sample from the posterior distribution πPosterior , essentially describing the probability

distribution adjusted for the measured data with known measurement error. In particular, for a dis-

tributed λ , this was investigated in [5]. Figures 5 and 6 provide information on such distributions.

They display histograms of values for λ obtained via realizations sampled from πPosterior in case

of a passive network with friction coefficients that are assumed to be pipe-wise constant and real-

izations of friction coefficients sampled from πPosterior in case of a single pipe with distributed

λ , respectively.

Formulation of optimization problems using probabilistic constraints

Fig. 6: Distributed:
histogram of the samples
from a Markov chain Monte
Carlo sampling for a
uniformly distributed prior
and normally distributed
measurement error

Having the stochastic and non-stochastic parameters of the gas network identified, a couple of

highly relevant optimization problems can be formulated. In particular, from the network opera-

tor’s point of view, the uncertainty quantification of nomination feasibility with respect to random

demand, the network design problem of minimizing the upper pressure limits while maintaining

a reliable network operation (see [1]), as well as the problem of maximizing network capacities

(see next paragraph) should be mentioned here. Due to the stochastic nature, the problems are

formulated as stochastic optimization problems with probabilistic (or chance) constraints in the

form

min{ f (x) |ϕ(x) ≥ α} and ϕ(x) := P (g(x, ξ) ≤ 0) ,

where α ∈ [0,1] is a fixed probability level that should be chosen reasonably high, ϕ(x) is the so-

called probability function, that is the probability of decision x being feasible with respect to the

given probabilistic constraints g(·, ·) . Moreover, f (·) denotes a cost function, and ξ is a random

vector in Rn with probability distribution P .

Function evaluations. The computational challenge of probabilistic constraints arises from the

absence of analytical representations for the probability function in general. However, in the Gaus-

sian case, if ξ ∼ 𝒩 (0, 6) , we can represent the probability function by transformation via spheric-

radial decomposition as integral over the unique sphere in the form

ϕ(x) =
∫

v∈Sn−1

χcdf(ρ(x, v))dµη(v) ,
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where Sn−1 denotes the unique sphere in Rn , η is the law of uniform distribution on it, and

0

rLv′rLv

ρ(x, v)

{z|g(x, z) = 0}

{z|g(x, z) ≤ 0}

Fig. 7: Spheric-radial
decomposition: radius
function ρ(x, v) to compute
the probability function

χcdf(·) denotes the cumulative probability function of the χ -distribution with n degrees of free-

dom. In the convex case, the function ρ(x, v) is the maximal radius r satisfying g(x, r Lv) ≤ 0

(see Figure 7), where L is such that the covariance matrix 6 decomposes into 6 = L L> . The

motivation to consider the spheric-radial approach for representing the probability function is due

to two reasons. First, even if the integral cannot be resolved analytically in many situations, the

integral can be computed efficiently by applying specialized Quasi-Monte Carlo (QMC) sampling

schemes on the unique sphere. A substantial variance reduction can be obtained when comparing

with crude sampling (see Figure 8). Secondly, gradient formulae can be derived on the basis of the

same sampling scheme.

Gradient formula. Like efficient function evaluations, also gradient information for the probabil-

ity function should be available when dealing with numerical solutions of the above optimization

problem. But computations that record difference quotients are numerically not practical due to

the fact that, because of the absence of analytical representations, function evaluations can not

be performed with high accuracy. As shown in Figure 9, an attempt to approximate the derivatives

in this way is hopeless. The example shows that no step width can be identified for a reasonably

good approximation of the involved partial derivatives. A remedy is to derive a similar formula as

before that allows to compute even gradients with high accuracy. Under some regularity conditions,
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and if we assume convexity and smoothness of the constraint mapping g(·, ·) , then we have that

∇ϕ(x) =
∫

v∈Sn−1

−
χpdf(ρ(x, v))

〈∇ξ g(x, ρ(x, v)Lv), Lv〉
∇x g(x, ρ(x, v)Lv)dµη(v) ,

where χpdf(·) denotes the χ -probability density function. In general, unfortunately, the probabil-

ity function needs not to be differentiable at all. But as shown in [7], under additional assump-

tions, derivatives are available as sub-differentials in terms of Clarke or Mordukhovich. However,

the main advantage of the above gradient formula is that the most expensive parts within calcu-

lations are (a) computing the sample scheme on the unique sphere and (b) computing the radius

function ρ(x, v) for each sample v ∈ Sn−1 . But both have to be done only once when computing

function and gradient evaluations of a given probability function.

Application. Finally, we are going to take a brief look at the results of two example problems
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Fig. 9: Relative error of
partial derivatives of an
example probability function
computed via difference
quotients and varying step
width

that follow the approach of probabilistic constraints in the context of optimization in stationary

gas networks. The first example aims to assist gas network operators in managing uncertainty of

friction along the pipes, while maintaining reliability of transmission and supply. The probability

constraints are used to maximize shape parameters of uncertainty sets with respect to friction in a

mixed probabilistic/robust model [3]. The shape parameter is fitted such that the probability of the

technical feasibility for arbitrary Gaussian random demand is at least α . For example, such shape

parameter could be the radius of balls around some nominal friction. Clearly, an increase of the

shape parameter and, hence, of the uncertainty set, will result in a stronger condition and, thus, in

a decrease of the probability. With this setup, we get access to the maximum amount of uncertainty

for the friction coefficients which still allows us to technically satisfy the random demands for all
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uncertain friction coefficients with a given probability. The solution of that optimization problem

may provide the network operator with an idea with what precision the friction coefficients need to

be known in the context of safe network operation (see Figure 10). Such information could be used
nonsensitive

sensitive

Fig. 10: Sensitivity analysis
with respect to the impact of
uncertain friction in a
stationary gas network

to roughly estimate these coefficients by expensive indirect measurements as described before or

in order to just identify critical parts of the network where it is more important to do so than in

others.

Our second example addresses the maximization of free booked capacities. In fact, exit points

can nominate their demands only according to given booked capacities. In principle, the network

owner has to make sure that all nominations complying with the booked capacities can be sat-

isfied by a feasible flow through the network. Since several nomination patterns may turn out to

be highly unlikely, the operator may accept guaranteeing this feasibility only with a certain high

probability level α , being aware that rare infeasibilities in the stationary model can be compen-

sated for by appropriate measures in the dispatch mode such as exploiting interruptible contracts.

This probabilistic relaxation of an originally worst-case-type requirement for feasibility gives the

network owner the chance of offering significantly larger booked capacities. This degree of free-

Fig. 11: Solution illustration
of maximizing booking
capacities on the exit side
within a stationary gas
network

dom can then be used to extend the currently booked capacities by a value that still allows one

to keep the desired probability level α , no matter what additional nominations in the extended

range have been chosen. Figure 11 displays the solution of the underlying optimization problem

in a medium-sized gas network with Gaussian exit demand.
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1.4 Probabilistic Methods for Mobile Ad-hoc Networks

Benedikt Jahnel and Wolfgang König

Wireless multihop ad-hoc communication systems

Since the 1960s, the idea of a wireless ad-hoc communication system has been around, in which

messages are transmitted without the help of additional infrastructure like base stations. Instead,

in such systems, the devices (transmitters and receivers) also carry a functionality as relays and

forward messages. Such a system has all chances to lead to a higher performance. Indeed, if the

messages do not have to jump in one hop to one particular base station, but can instead travel in

many separate hops from device to device, then the amount of messages that the system can cope

with is potentially larger, the number of trajectories of a given message is higher (which leads to

a higher stability against transmission failures), and the number of necessary (expensive!) base

stations is much lower. On the other hand, the transmission of each message might suffer from

time delays (hence we are not talking about real-time transmission, but about down- or upload-

ing, e.g.), and the high amount of message trajectories leads to additional logistic problems, like

routing questions or the need for algorithms to forward messages in a given relay.

There is a lack of theoretical knowledge even about the most important properties of such systems

in typical real-world situations. These properties are connectivity and capacity, i.e., the questions

whether or not a message can be successfully forwarded via the existing relays, and whether or not

the relays can cope with all the messages, that is, that they are not overloaded. The first question

depends in a decisive manner on the location of every device at the time of the transmission of

the messages considered. Certainly, there are many detailed effects that strongly influence these

two basic questions, like interference that makes transmission impossible if too many messages

concentrate in a given region, and details of the environment, i.e., the location of streets, houses,

fences, trees and so on, which may hamper the transmission.

Probabilistic models: stochastic geometry

The mathematical analysis of wireless ad-hoc communication systems is often based on proba-

bilistic spatial models. Here, the locations of the devices are modeled by a random Poisson point

process X in a communication area W ⊂ Rd governed by a measure λµ(dx) on W , where

λ ∈ (0,∞) is the intensity of the devices process. We connect each two of these locations if a

direct transmission between them is possible, which depends mainly on their distance. In this

way, we obtain a random graph, a geometric network. The question of connectivity is intimately

related to the question of percolation, i.e., the question whether or not messages can travel un-

boundedly far on the graph via hops from device to device. This is closely connected with typical

questions in stochastic geometry, more precisely, in continuum percolation theory, like the one

about a phase transition in the parameter λ : Is the connectivity in the network dramatically im-

proved if λ is pushed beyond a certain critical threshold λc ? The knowledge of its value is vital
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for network operators, as it approximates a lower bound for the number of devices necessary for a

good quality of service.

However, to be useful for the analysis of ad-hoc systems, the model has to be adapted to real

situations in various ways, and additional structures must be introduced, like interference and

congestion in the presence of many message trajectories, or environment details like streets, and

capacity constraints. Our main investigations concern the quality of service (measured in terms

of connectivity and capacity) in average situations or in extremely bad situations (by estimating

probabilities of bad service), or the shape of the main flow of the message trajectories. For this, we

derive analytical approximations in various limiting regimes (for example, the high-density limit

λ→∞ ) and deduce general principles about the functionality of the system from that. Probabilis-

tic theories are employed like weak convergence of point clouds, percolation theory, stochastic

processes on random graphs, large deviations, and more.

Projects at Weierstrass Institute

At the Weierstrass Institute, a rich amount of research in several directions has been done since

2014. Here we report on some of these directions that were brought to a preliminary conclusion in

2017:

� Random message routing. In [4] and [5], we study the family of many random message trajecto-

ries from all the devices to one single base station in a model where this family has a tendency

to minimize its interference and congestion.

� Random street system. In [1], we add to the communication area W = Rd a random street

system and assume that the devices are placed only on the streets. We study large-distance

connectivity properties.

� Capacity constraints. In [3] and [2], we study the effect of a hampering by exceedance of the

capacity of the relays under the rule “first come – first serve”. Here, we introduce a time depen-

dence and analyze the probability of an unlikely bad quality of service.

Random message routing

In this line of research, we consider a fixed compact communication area W ⊂ Rd , which contains

one single base station, and a large cloud X ⊂ W of randomly distributed devices in that area with

intensity λ ∈ (0,∞) . We assume that each device sends out a message that is supposed to arrive

at the base station after some hops via the other devices. For each message, there are, of course,

many possible trajectories. We study here the family of all possible such trajectories and give a

joint distribution to it. This distribution is in the spirit of a Gibbs measure, i.e., the messages are a

priori uniformly and independently distributed, and the probability of each trajectory is exponen-

tially weighted with two terms: a term that favors low interference of the system, and a term that

suppresses congestion, i.e., the appearance of too many hops at any relay. Interference is often —

and also here — measured in terms of the signal-to-interference ratio (SIR) for a hop from a site x
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to a site y if messages are sent out from any site of X , given by

SI R(x, y, X) =
`(|x − y|)∑

z∈X\{x,y} `(|z − x |)
, x, y ∈ W,

where ` : (0,∞) → [0,∞) is the path-loss function, which gives the strength of the transmitted

signal at a given distance. Typical choices are `(r) = min{1, r−α} or `(r) = (1 + r)−α for some

α ∈ (d,∞) . Then, our trajectory measure gives a weight exp(−γSI R(x, y, X)−1) to any hop of a

message from x to y of any of the message trajectories, where γ ∈ (0,∞) is a strength parameter,

and an additional term of the same form for each pair of hops that use the same relay.

We study the resulting message trajectory distribution conditional on the point cloud X of users

in the limit λ → ∞ of high spatial density of the devices in the area W , i.e., we look at ap-

proximations of the main flow of all the trajectories in the situation in which extremely many de-

vices are present in W . For simplicity, we do not introduce a time dependence and assume that

all the many messages are present at the same instance, but we adapt the parameter γ to the

exploding amount of interference that we have in this situation. In this limit, we obtain, using a

large-deviation analysis for dense point clouds, an analytic characterization of the main flow of all

the messages as the minimizers of a characteristic variational formula, which has two “energetic”

terms describing interference and congestion and one “entropic” term describing probability.

In a second step, we analyze geometric properties of this flow in various asymptotic regimes, like

a large area W and large number of hops, high strength γ of interference punishment, and ex-

istence of local regions of particularly high density of devices in W . We show that the “typical”

trajectory approaches, in the first two regimes, a straight line and characterize the “typical” hop

size. See Figure 1 and Figure 2 for simulations of the densities of the one-hop and the two-hop

trajectories in a one-dimensional system. Fig. 1: A one-dimensional
picture: the density of the set
of sites from which the
typical message jumps
directly to the base station
without relaying hop

Fig. 2: The logarithm of the
joint distribution of the
starting site and the first
relaying hop for the same
one-dimensional simulation,
seen from two different sides

In the last regime, we demonstrate that the high-density region has a suppressing effect on the

number of relaying hops, both globally and locally.
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Random street system

In this line of research, we consider a random cloud of devices X in the infinite space W = Rd .

They form a random graph by putting an edge between any two of them if their distance is not larger

than r , the reach. The interesting feature here is that the intensity measure λµ(dx) of X is based

on a random measure µ , for example, the Hausdorff measure on a given random street system.

See Figure 3 for examples of such systems and Figure 4 for a model of devices and additional

relays on one of these street systems.

Fig. 3: Street system models
given by Poisson–Voronoi
tessellation (left),
Poisson–Delaunay
tessellation (middle) or
Poisson line tessellation
(right)

Fig. 4: Connectivity network
of devices (blue) and boxes
(green) where devices are
confined to be positioned on
streets (red)

We are interested in phase transitions in the global connectivity and in more detailed information

about the probability of long-distance communications. A first rough criterion for the quality of

the network is the existence of infinite clusters in our network, i.e., the occurrence of percolation

beyond a critical threshold λc . This critical intensity, of course, depends in a non-trivial way on

the underlying street system.

We also provide more detailed information about the probability that a typical device is connected

to another device far away. This probability is encoded in the percolation probability θ that, under

the Palm version of the distribution, the origin is connected to infinity. In our project, we investigate

the asymptotic behavior of θ in a variety of limiting regimes. For example, we show that in the limit

λ→∞ of a large device intensity, θ approaches 1 exponentially fast, and the exponential rate of

convergence depends delicately on the local probabilistic properties of the random street system.

On the other hand, in the limit λ ↓ 0 of sparse devices, when at the same time the reach r tends to

infinity, θ approaches a universal limit given by the percolation probability of the corresponding

Boolean model (i.e., the network without confinement to streets).

Capacity constraints

We consider a Poisson point process of transmitters X = {Xi : i ∈ I } in a compact area W ⊂ Rd ,

with intensity measure λµ(dx) under the high-density limit as λ → ∞ . Additionally, there is a

deterministic point cloud Y ⊂ W of relays, which approaches a density ν(dx) . Every transmitter

Xi ∈ X comes with two independent random times Si and Ti at which it starts and ends its

transmission in a finite time interval [0, τ ] . When the transmission starts, Xi randomly chooses a
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relay Yi ∈ Y according to some preference kernel

κ(Yi |Xi ) =
κ(Xi , Yi )∑
y∈Y κ(Xi , y)

.

Now, every relay is assumed to have a limited capacity of 1 , in other words, it can only serve one

transmitter at a time. Consequently, from the perspective of the relay, only the first connection

attempted by a transmitter Xi is successful and subsequent attempts are in vain during the time

interval [Si , Ti ] , but again possible afterwards.

Fig. 5: Three relays (cyan)
are connected to the base
station (black). Green
transmitters have
successfully established a
connection, red ones not

We are interested in the normalized empirical measure of frustrated transmitters and their trans-

mission intervals,

0 =
1
λ

∑
i∈I : Yi = occupied at time Si

δ(Si ,Ti ,X i ),

in other words, of those transmitters that are unable to establish a connection to their selected

relay and their individual time interval of transmission. We analyze the situation where 0 is away

from its expected behavior. In that sense, we investigate the bottleneck properties of a system

where, for example, too many users are disconnected. Let us mention that bottlenecks can appear

for different reasons, for example, due to spatial concentration of transmitters or too long transmis-

sion times. But not all these options are equally likely to be the reason for the undesired system

behavior.

Mathematically, we perform a large deviation analysis for the set of frustrated transmitters in the

limit λ → ∞ of more and more transmitters in W . Similarly to the above project on random

message routing, the resulting variational formula for the exponential rate of decay takes the form

of an entropy–energy minimization problem and can be used to determine the most likely behavior

of the system in the frustration event.
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1.5 Statistical Inference for Barycenters

Vladimir Spokoiny and Alexandra Suvorikova

Many applications in modern statistics go beyond the scope of classic setting and deal with data

that lie on certain manifolds: statistics on shape space, computer vision, medical image analysis,

bioinformatics. Most of these problems have a common feature; namely, they are closely related

to the detection of patterns. Pattern is a very general concept that describes some (unknown and

hidden) structure in the data, which has to be revealed. For instance, the problem of classifica-

tion of neuro-cognitive states of mind is associated with the detection of brain activity patterns

in functional magnetic resonance imaging. Another example comes from bioinformatics, namely,

from computational epigenetic, that aims to detect common patterns in gene expression regula-

tion, which is supposed to be one of the crucial aspects of morphogenesis. Pattern can also be

interpreted in a more specific way as a “typical” geometric shape inherent to all observed items.

One can define shape as whatever remains after proper normalization of the object (i.e., rotations,

dilations, and shifts are factored out). As a toy example, one can think of cursive letter practice,

where kids aim to follow some template, but sometimes fail to repeat it exactly due to lack of ex-

perience. So, given only letters written by several children, we are interested in the recovery of the

true template that was provided to them by the teacher. As a problem of the same flavor, one can

consider an estimation of a typical spatial configuration of protein backbones. Basically, this set-

ting appears in problems where the data is subjected to deformations through a random warping

procedure. Such problems are also common for image analysis and shape analysis.

Another interesting application arises in the context of Big Data in connection with data fusion

problems, which deal with the growing use of distributed or parallelized calculations. Massive

data sets are collected and treated by different units, since their large number makes the analysis

on a single machine not feasible. Yet the homogeneity of the distribution of the data corresponding

to each unit is not true. So the task consists in aggregating all the different results and defining

a consensus result between all these processes. The problem appears to be closely related to the

problem of pattern extraction.

Of data and averaging

The most natural way of factoring out the noise from a given sample goes to the time of Gerolamo

Cardano (1501–1576), who suggested that the accuracy of the empirical mean improves with the

growth of the sample size. Now the principle is known as the Law of Large Numbers. However,

a problem of definition of a mean might not be as straightforward as one might think: The first

question at stake is about the possibility to introduce a mean that preserves the inner structure or

the pattern that is inherent to all observed items. Figure 1 explains the idea.
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Fig. 1: Euclidean mean vs.
2 -Wasserstein mean

The top panel contains four geometric shapes, while the images below depict two different ap-

proaches to averaging. The left-bottom one corresponds to the “classical” Euclidean mean, i.e., all

shapes are considered as vectors in a high-dimensional Euclidean space endowed with 2 -norm.

The right-bottom shape is a Fréchet mean, computed in 2 -Wasserstein space.

Thus, a suitable way of constructing averages leads immediately to the extraction of the inner struc-

ture of interest. The left column of Figure 2 contains random sub-samples from the US-American

Modified National Institute of Standards and Technology (MNIST) database (i.e., digits written by

different persons), while the right column depicts the typical patterns of writing the digits “3” and

“5” among all respondents in the database (average of all handwritten “3” and “5”, respectively).

Fig. 2: Averaging over the MNIST
database

The key takeaway message is that the usual mean is not suitably representative of a collection

of points on an arbitrary manifold, since the natural distance between these objects is not the

Euclidean one. Indeed, much of statistical methodology is deeply rooted in methods resting upon

linearity, in the sense that they exploit the vector structure of the ambient space in a fundamental

way. And this is not the case any more when dealing with objects having some inner geometric

structure. Now we are coming to the main question of this section: “What is a nice way to average

butterflies?”

How to average on a manifold. In what follows, we consider a probabilistic setting. Let (X, ρ) be

some general metric space and P a Borel measure on it. The straightforward generalization of the

least-square estimator leads to the concept of the Fréchet mean, that is, the (set of) global minima

of the P -variance

µ∗ ⊆ arg min
µ∈X

∫
X
ρ2(µ, ν)P(dν),

where µ∗ is referred to as the population Fréchet mean and is not necessarily unique.

Further, we assume that P and X are such that µ∗ is unique and is considered as a pattern,

generated by the distribution P . Given an independent and identically distributed (iid) sample
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{ν1, ..., νn} s.t. νi v P , one can build its empirical mean

µn := arg min
µ∈X

1
n

n∑
i=1

ρ2(µ, νi ),

which is referred to as an empirical barycenter.

How to capture the geometry. A good choice for extracting the underlying geometry is to take

the 2 -Wasserstein space as the underlying space. Let X be a set of all probability measures sup-

ported on Rd with finite second moment, X = 𝒫2(Rd ) . Note that many images and signals can be

considered as points in 𝒫2(Rd ) up to a normalization; so, from now on without loss of generality

we refer to observed objects as measures. The space is endowed with the 2 -Wasserstein distance

W2 ; see [1]. For any µ and ν ( supp(µ), supp(ν) ⊆ Rd ) that belong to 𝒫2(Rd ) it is defined as

W 2
2 (µ, ν) = inf

π

∫
‖x − y‖2dπ(x, y),

with π ranging in the set of probability measures on Rd
× Rd with marginals µ and ν . The 2 -

Wasserstein distance is a particular case of the Earth Mover Distance (EMD): The distributions

µ and ν are considered as two different ways of piling up a certain amount of ground over the

region in Rd , and the EMD is the minimum cost of turning one pile into the other. The overall

transportation cost is calculated as the amount of ground moved multiplied by the distance by

which it is moved.

Further, we refer to the Fréchet mean in Wasserstein space as the Wasserstein barycenter; see [2].

Thus, the population barycenter µ∗ and its empirical estimator µn , which is built using an ob-

served iid sample {ν1, ..., νn} , are defined as

µ∗ := arg min
µ∈𝒫2(Rd )

∫
𝒫2(Rd )

W 2
2 (µ, ν)P(dν), (1)

µn := arg min
µ∈𝒫2(Rd )

1
n

n∑
i=1

W 2
2 (µ, νi ). (2)

It is a well-known fact that µn is a good (consistent) estimator of µ∗ ; see [3]:

W2(µn, µ
∗) −→ 0, as n→∞. (3)

In other words, with the growth of the size of an observed sample n , the estimator tends to be

closer to the object of interest. All aforementioned naturally leads to the problem formulation.

Problem statement. Let P be some unknown distribution on a space of measures 𝒫2(Rd ) :

supp(P) ⊆ 𝒫2(Rd ) . And let µ∗ be the induced template object, defined in (1). Instead of ob-

serving µ∗ itself, we are given its deformed or noisy counterparts {ν1, ..., νn} , νi v P . A possible

consistent estimator of µ∗ is µn , defined in (2). Apart from consistency, this estimator captures

the underlying geometry of µ∗ . An example is presented in Figure 3.
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Fig. 3: Recovery of the template
object

An observed set of deformed nested circles {ν1, ν2, ν3, ν4} is placed in the center, and a recovered

shape µ4 is to the right. The object of interest µ∗ , which is not known in real-life problems, is

depicted on the left-hand side of the box.

The information about asymptotic convergence properties is not enough for many practical appli-

cations. From an engineering point of view, it is very important to know how large the observed

sample should be to be able to approximate µ∗ with the desirable precision and how fast the

convergence of µn is. These two questions were addressed in our work [4].

Reliability matters

The ability to extract important geometric information leads us to the problem of validation of the

quality and precision of the shape recovery procedure, described above. In statistical inference,

this is usually done by the construction of confidence sets. First, we briefly recall the concept.

Confidence sets. As before, let µn be an estimator, constructed from a random sample

{ν1, ..., νn} of size n . We aim to recover radii of a ball ℬr (µn) , centred around µn , which contains

the template µ∗ with a fixed probability 1− α :

ℬr (µn) :=
{

all µ ∈ 𝒫2(Rd ) : W2(µn, µ) ≤ r
}
, (4)

rn(α) := arg min
r>0

{
P
(
µ∗ 6∈ ℬr (µn)

)
≤ α

}
.

The quantity rn(α) is referred to as α -quantile. In many real-world problems, the confidence level

is set to 95 %, i.e., α = 0.05 . However, in real life, P is usually not known and a given training

sample is not large enough to construct its empirical counterpart. Thus, the direct estimation of

rn(α) using classical resampling techniques, e.g., Monte Carlo-like methods, is not possible. A

plausible alternative in this case is the multiplier bootstrap technique, which allows to replace

rn(α) with some computable counterpart r[n(α) ; see [5].

Method in a nutshell

Multiplier boostrap. The idea of multiplier bootstrap consists in inducing some additional ran-

domness, which, nevertheless, can be controlled. It is done by generating random weights and

the reweighting of summands in (2). Namely, let {ν1, ..., νn} , νi v P , be an iid training set. The
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weights {u1, ..., un} are also iid, generated from ui v P[ . For instance, one may choose a Pois-

son distribution with parameter 1 , P[ = Po(1) . Now we are ready to construct a new reweighted

barycenter

µ
[
n := arg min

µ∈𝒫2(Rd )

n∑
i=1

W 2
2 (µ, νi )ui ,

which differs from (2) by additional multipliers ui . However, this does the trick: Now all the ran-

domness is controlled by a procedure of weight generation. One can easily estimate r[n(α)

r[n(α) := arg min
r>0

{
P[
(
µn 6∈ ℬr (µ

[
n)
)
≤ α

}
.

Under some technical conditions, see [4], it appears to be a valid replacement for rn(α) with high

probability ∣∣P(µ∗ 6∈ ℬ
r [n(α)

(µn)
)
− α

∣∣ ≤ 𝒞/
√

n,

where 𝒞 is some generic constant.

Rate of convergence. The obtained rate of convergence of the estimator µn to the true point µ∗

is of order 1/
√

n . With high P -probability, it holds

W2(µn, µ
∗) ≤ 𝒞/

√
n,

where 𝒞 is again some generic constant.

Conclusions. Wasserstein barycenters or Wasserstein variations are complicated random vari-

ables whose asymptotic distribution relies on the initial distribution of admissible deformations

P . Multiplier bootstrap proves to be helpful to estimate variance error bounds in their estimations,

enabling the construction of confidence sets, given a relatively small training set. And this appears

to be very useful in many practical applications. The next step in this research is to define the lim-

iting distribution of the approximation error in (3).
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1.6 Gradient Structure for Flows of Concentrated Suspensions

Dirk Peschka, Marita Thomas, and Barbara Wagner

Introduction: From dilute to dense suspensions

Mixtures of solid particles and viscous liquids are omnipresent in nature and everyday life. An

Fig. 1: Particle distribution
and corresponding volume
fractions φs , φ` . Left: char-
acteristic functions of parti-
cles Ps : �→ {0,1} ;
right: volume fractions
φs = 〈Ps〉 defined by a
suitable average.

example for such a suspension is the mixture of sand particles with water, also known as mud or

slurry. The fraction of volume occupied by solid particles 0 ≤ φs ≤ 1 relative to the liquid content,

as indicated in Figure 1, strongly affects the suspension flow. For 0 < φs � 1 the suspension is

dilute, and particles are transported almost passively with the liquid, whereas when the density

approaches a critical volume fraction φs → φcrit depending on particle shape and distribution,

the suspension undergoes a jamming transition where the solid part becomes rigid and the fluid

flow is in a Darcy regime.

Suspension flows are involved in a plethora of technological processes such as in the food, phar-

maceutical, printing, or oil industries. Predictive models on the length scale of these applications

need to combine the interactions of the liquid and solid particles among each other on the micro-

scale with a description of the dynamics of the liquid and solid phase on the continuum scale.

On the continuum scale, such a two-phase model operates on averaged flow quantities such as

volume fraction φs , velocities u , or effective viscosity µeff relating shear stress τ and shear rate

Du via τ = 2µeffDu . For dilute suspensions of Newtonian liquids with viscosity µ and spherical

particles Einstein (1905) derived an effective viscosity

µeff
µ
= 1+

5
2
φs . (1)

However, for most problems suspensions are not dilute and exhibit the formation of aggregates,

dense sedimentation layers, and shear-induced phase separation into highly concentrated and

dilute regions. In fact, for any suspension where the liquid evaporates, Einstein’s result (1) will

eventually fail.

For many decades a great number of experimental and theoretical studies have been devoted to

the extension of Einstein’s law to the regime of concentrated suspensions. It has been observed

experimentally that, as the suspension attains a solid-like state, it undergoes a jamming transi-

tion and develops further distinct phases, reflecting how particles interact and form large-scale

networked patterns. They show a direct dependence on the microscopic properties, such as parti-

cle shape or interparticle forces. In fact, the transitions towards a concentrated suspension can be

viewed as a paradigm for studying nonlinear rheological behavior of complex liquids.

In a ground-breaking experimental study by Cassar et al. [1], it was found that a dense suspension

on an inclined plane sheared at a rate Du under a confining pressure pp can be characterized by

a single dimensionless control parameter, the viscous number

Iv =
2µ|Du|

pp
. (2)
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This result was taken up by Boyer et al. [2], where a new constitutive friction law combining the

Fig. 2: Sedimentation of
discrete heavy particles in a
box with a Stokes flow in
� ⊂ R2 showing flow fields.
Top: dense suspension with
φs = 0.47 ; bottom: dilute
suspension with φs = 0.09 .

rheology for non-Brownian suspension and granular flow has been proposed, and for the first time

offers to quantitatively capture the jamming transition. In Ahnert et al. [5], this new constitutive

friction law was incorporated in the derivation of a new two-phase model for non-homogeneous

shear flows. The derivation is based on an averaging of discrete particulate flows as in Figures 1

and 2 along the lines of Drew & Passman [4]. In Murisic et al. [3], models including particle interac-

tions, i.e., shear induced migration, were used to predict the dynamics of a suspension on inclined

planes. Also here, the limit φs → φcrit was incorporated by letting µeff →∞ .

From a mathematical point of view, it is of interest to carry out the transition from a dilute to a con-

centrated suspension as a rigorous scaling limit. For this it is beneficial if models for the different

regimes have a general mathematical structure in common, preferably of variational type, so that

the limit passage can be pursued using variational convergence methods. This is, e.g., given when

the models are of gradient-flow type, so that the evolution of the system is characterized in terms

of an energy functional and a dissipation potential.

The topic of this contribution is twofold: Firstly, we discuss the modeling of two-phase flows from

an energetic point of view to highlight that the general mathematical structure behind indeed is of

gradient-flow type. Secondly, we present recent novelties in the modeling of concentrated suspen-

sions and show that the deduced models fit into this general framework.

Modeling: Variational formulation via gradient flows

Moving domains and flow maps. We consider a liquid (index ` ) and a solid (index s ) phase at

time t ∈ [0, T ], both located in a domain �(t) ⊂ Rd , d = 2,3, with boundary 0(t) . At each time

t, each point in �(t) is occupied by a certain volume fraction φs(t, ·) : �(t) → R of solid and

φ`(t, ·) : �(t)→ R of liquid, so that

0 ≤ φs , φ` ≤ 1, and φs + φ` = 1, in [0, T ]×�(t). (3)

Each of the two phases i ∈ {s, `} is transported by a velocity field ui (t, ·) : �(t)→ Rd

∂tφi +∇ · (φi ui ) = 0, (4)

so that the total velocity u = φ`u`+φsus satisfies ∇ ·u = 0 . The basis for this construction are so-

called flow maps Xi : [0, T ]×�(0)→ Rd , which are defined on the reference domain �(0) and

which describe the motion of the domain at any time t ∈ [0, T ] by the kinematic condition for the

current domain �(t) = {x = Xs(t,X), X ∈ �(0)} !
= {x = X`(t,X), X ∈ �(0)} . Hence, a function

φ0
i : �(0)→ R given in the reference domain �(0) is transformed to the current domain �(t) in

the following way: φi (t, x) = det(∇XXi (t,X))−1φ0
i (X) . The velocities are ui (t, x) = ∂t Xi (t,X) , so

that (4) holds automatically. On the free boundary 0(t) between the two phases, we claim us = u` .

Alternatively, one can set (us − u`) · n = 0 and generate an additional boundary condition.
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Energy and dissipation functionals. For given phase indicators q = (φs , φ`) ' (Xs ,X`) and any

pair of velocities q̇ = (us ,u`) ∈ V satisfying ∇·u = 0 , we assign the dissipation potential

𝒟(q̇, q) =
∫
�(t)

φs µ̃s |Dus |
2
+ φ`µ̃`|Du`|2 + M

2 |us − u`|2 dx,

if φi ,Xi satisfy (3) & (4), and 𝒟(q̇, q) = ∞ otherwise,
(5)

where the symmetrized gradient Dui := 1
2 [∇ui + (∇ui )

>] is the shear rate of the material, and

where µ̃i ,M are nonnegative functions depending on φs . For a Newtonian liquid we have the

limit µ̃`(φ`)→ µ > 0 as φ` = (1− φs)→ 1 . We further assume that the system stores energy as

the sum of gravitational and surface energies ℰ(q) = ℰgrav(q)+ ℰsurf(q) , where

ℰgrav(q) =
∫
�(t)

ε(φs , φ`) dx and ℰsurf(q) =
∫
0(t)

σ da,

if φi ,Xi satisfy (3) & (4), and ℰgrav(q) = ∞, resp. ℰsurf(q) = ∞ otherwise,
(6)

with the energy density ε(φs , φ`) = gx3(φsρs + φ`ρ`) , earth’s gravity g, mass densities ρs , ρ` of

solid and liquid phase, and surface tension σ > 0 .

Gradient flow and resulting PDE system. The gradient flow induced by 𝒟 and ℰ from (5) and (6)

is formally equivalent to the Helmholtz–Rayleigh dissipation principle min !
= 𝒟(q̇, q)+〈Dqℰ(q), q̇〉

over all possible velocities q̇ . As a result, the decay of energy

d
dt ℰ

(
q(t)

)
= −〈Dq̇𝒟(q̇, q), q̇〉 = −2𝒟(q̇, q) ≤ 0 (7)

is satisfied by definition for minimizers. Herein, the functional derivatives of 𝒟 and ℰ are ob-

Fig. 3: Sketch of moving
domain �(t) and its free
and fixed boundaries and
particles represented with
densities φs , φ`

tained using Reynold’s transport theorem, integration by parts, and the shape derivative of surface

integrals, so that for all test velocities q̇v := (vs , v`) ∈ V with v = φsvs + φ`v` it is

〈Dq̇𝒟(q̇u, q), q̇v〉 =
∫
�(t)

[
−∇ · τs(us)

]
· vs +

[
−∇ · τ`(u`)

]
· v` + M(us − u`) · (vs − v`) dx

+

∫
0(t)

vs ·
(
τs(us) · n

)
+ v` ·

(
τ`(u`) · n

)
da, and

〈Dqℰ(q), q̇v〉 =
∫
�(t)

∑
i

[vi · (φi∇ pi )] dx+
∫
0(t)

∑
i

(−φi pi )vi · n

+ [ε − (d − 1)σκ]v · n da

with the pressure pi = ∂φi ε ≡ gx3ρi , the shear stress as τi (ui ) = 2φi µ̃iDui , κ the signed

mean curvature of 0(t) . A minimizer of the Helmholtz–Rayleigh dissipation principle satisfies

〈Dq̇𝒟(q̇u, q), q̇v〉 + 〈Dqℰ(q), q̇v〉 = 0 for all test velocities q̇v ∈ V as above. This is the weak

formulation of the following system of partial differential equations

∂tφs +∇ · (φsus) = 0 in�(t), (8a)

∂tφ` +∇ · (φ`u`) = 0 in�(t), (8b)

−∇ · τs + M(us − u`) = −φs∇
(

p + ps
)

on 0(t), (8c)

−∇ · τ` − M(us − u`) = −φ`∇
(

p + p`
)

on 0(t), (8d)
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where the additional Lagrange multiplier p enforces the constraint ∇ ·
(
φsus + φ`u`

)
= 0 . On

fixed boundaries we have no-slip conditions us = u` = 0 , whereas on free boundaries 0(t) , the

formalism generates the boundary condition(
τs + τ`

)
n =

[
(d − 1)σκ + p

]
n on 0(t), (8e)

where we used φs ps + φ` p` = ε and the essential boundary conditions us = u` at 0(t) ; see

Figure 3. The proper behavior of the system for dilute or concentrated suspensions is encoded in

the behavior of µ̃s, µ̃`,M as functions of φs as φs → 0 or φs → φcrit .

Rheology for concentrated suspensions

In Ahnert et al. [5], a model for dense suspension was derived by use of a systematic averaging pro-

cedure of particle characteristic functions Ps : � → {0,1} , so that φs = 〈Ps〉 ; see also Figure 1.

While the fluid momentum balance (8d) is unchanged, the specific choice of closure relations pro-

duces the slightly different form of the solid momentum balance

−∇ · τs − M(us − u`) = −φs∇
(

p + ps
)
+ (p` − ps)∇φs in�(t),

where the last term (p` − ps)∇φs additionally appears. Then, by defining pc := φs(ps − p`) , the

so-called contact pressure [5] is added to the formulation. In order to turn either of these models

into a model description for concentrated suspensions in the sense of [1, 2], one needs to make a

specific choice for the coefficients: We set M = Daφ
2
s
φ`

with the Darcy number Da . While the liquid

stress τ` can be assumed, for simplicity, to be purely Newtonian τ`(u`) = 2φ`µDu` , a major issue

is the modeling of the stress-strain relationship for the solid phase. It basically divides into two

cases:

Case I: For 0 ≤ φs < φcrit the solid shear stress is proportional to the shear stress and the contact

pressure is proportional to the modulus of the shear rate

τs = 2φs µ̃sDus , pc ≡ φs(ps − p`) = 2µn(φs)|Dus |, (9)

with µ̃s = µηs(φs) and µn = µηn(φs) defined using

ηs(φs) = 1+
5
2

φcrit
φcrit − φs

+ ηc(φs)
φs

(φcrit − φs)2
, (10)

ηn(φs) =

(
φs

φcrit − φs

)2
, (11)

where we additionally introduced ηc(φs) = η1 + (η2 − η1)/(1 + I0φ
2
s (φcrit − φs)

−2) . The func-

tions ηs , ηn have contributions from Einstein’s for dilute suspensions and a contribution for dense

suspensions. For the constitutive law, it is important to note that ηn and ηs exhibit a quadratic

singularity, when φs approaches the critical volume fraction φcrit .

This has the following implications: For a positive contact pressure pc , as the shear rate Dus goes

to zero, ηn has to go to infinity. Hence, ηs has to go to infinity at the same rate and, therefore,

the modulus of τs has to go to a positive value. This turns out to be µ1 pc/φs , with µ1 = 0.32 ,
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µ2 = 0.7 , and I0 = 0.005 (experimentally fitted) and is a yield stress threshold below which we

are in Case II, where the shear rate is zero and the particles are jammed.

Case II: Here, φs = φcrit and, therefore, Dus = 0 and |τs | ≤ µ1 pc/φs . Jammed regions are

separated from regions where |Dus | > 0 by yield surfaces across which φs , u` , us , (−p`I+τ`)·n ,

(−psI + τs) · n , Dus are continuous. Fluid transport still takes place in the jammed state, which

for small particles Da� 1 is described by Darcy’s law.

For some simple flow geometries such as channel flow, phase-space analysis showed that there is

a critical value φcrit of the volume fraction where the flow separates into two regions, a jammed

one in the middle of the channel and a dilute outer region, and captured for the first time the

experimentally found results. Moreover, reduced drift-flux models were asymptotically derived and

numerically solved to show the evolution towards this stationary state. Some first studies [6] on

the stability of these solutions show a wealth of structure even for this simple flow geometry.

Fig. 4: Left: sketch of plug
flow region in a channel;
right: time evolution of solid
volume fraction using the
drift-flux approximation for
the parameters with
µ1 = µ2 and p1 = −10 ,
starting from an initial
uniform profile of
φ(0, x3) = φcrit/2 . The
profile first changes near the
channel center and wall. The
volume fraction increases
near the center until
maximum packing is
reached, which spawns an
unyielded region. This
unyielded region then grows
so that the yield surface
approaches a stationary
value.

Further mathematical insight into the structure of these equations will be necessary to treat com-

plex liquid problems, in particular, with free surfaces. Here, the concept of gradient structures will

be highly valuable to produce well-posed models for dense suspensions.
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2.1 Profile

The Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Leibniz Institute in For-

schungsverbund Berlin e.V. (FVB) is one of eight scientifically independent institutes forming the

legal entity FVB. All eight institutes of FVB are individual members of the Leibniz Association (WGL).

The Director of WIAS is responsible for the scientific work at WIAS, the Managing Director of the

Common Administration of FVB is in charge of its administrative business. The official German

name of the institute is Weierstraß-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut

im Forschungsverbund Berlin e. V.

Basic research: 

real world new mathematical problems basic
mathematical research broader areas of competence

 new fields of applications

Pre-competitive research: 

interdisciplinary joint projects with
partners from natural sciences, 

engineering,economy, life sciences

Com-
petitive

research: 

R&D projects
with industry, pro-
totypical software

The mission of WIAS is to carry out project-oriented research in applied mathematics. WIAS con-

tributes to the solution of complex economic, scientific, and technological problems of transre-

gional interest. Its research is interdisciplinary and covers the entire process of problem solution,

from mathematical modeling to the theoretical study of the models using analytical and stochastic

methods, to the development and implementation of efficient and robust algorithms, and the sim-

ulation of technological processes. In its field of competence, WIAS plays a leading role in Germany

and worldwide. WIAS’s successful research concept is based on the above pyramid-shaped struc-

ture: Right at the bottom, basic mathematical research dedicated to new mathematical problems

resulting from real-world issues as well as research for broadening mathematical areas of compe-

tence for developing new, strategically important fields of application. Based on this foundation,

precompetitive research, where WIAS cooperates in interdisciplinary joint projects with partners

from the natural sciences, engineering, economy, and life sciences. On top, cooperations with in-
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dustry in R&D projects and the development of prototypical software. Close cooperations with com-

panies and the transfer of knowledge to industry are key issues for WIAS. This is also reflected by

the fact that Prof. Dietmar Hömberg, head of a research group at WIAS, has become the President

of the European Consortium for Mathematics in Industry (ECMI) for the period 2016–2017.

A successful mathematical approach to complex applied problems necessitates a long-term mul-

tiply interdisciplinary collaboration in project teams. Besides maintaining the contact to the part-

ners from the applications, which means, in particular, to master their respective technical termi-

nologies, the WIAS members have to combine their different mathematical expertises and software

engineering skills. This interdisciplinary teamwork takes full advantage of the possibilities avail-

able in a research institute.

The Weierstrass Institute is dedicated to university education on all levels, ranging from the teach-

ing of numerous classes at the Berlin universities and the supervision of theses to the mentoring

of postdoctoral researchers and to the preparation of two trainees to become “mathematical tech-

nical software developers”.

WIAS promotes the international collaboration in applied mathematics by organizing workshops

and running guest and postdoc programs. The institute is embedded in a dense network of scien-

tific partners. In particular, it maintains various connections with Leibniz institutes and actively

takes part in the forming and development of strategic networks in its fields. Thus, WIAS coor-

dinates the Leibniz Network “Mathematical Modeling and Simulation (MMS)” connecting twenty-

eight partners from all sections of the Leibniz Association. Modern methods of MMS are imperative

for progress in science and technology in many research areas. In 2017, WIAS received 100,000 eu-

ros from the Strategic Fund of the Leibniz Association for 24 months to organize the network. The

“2nd Leibniz MMS Days” took place from February 22 to 24, 2017, in Hanover; see page 118.

Fig. 1: The President of the
Leibniz Association, Prof.
Kleiner, opened the “2nd
Leibniz MMS Days”

WIAS has a number of cooperation agreements with universities and is one of the “motors” of

the Berlin mathematical research center MATHEON, a cooperation partner of the Einstein Center

for Mathematics Berlin, and it supports the Berlin Mathematical School (BMS) through various

teaching and supervision activities.

Annual Research Report 2017

https://www.wias-berlin.de/~hoemberg?lang=1


46 2 WIAS in 2017

2.2 Structure and Scientific Organization

2.2.1 Structure

In 2017, WIAS was organized into the following divisions for fulfilling its mission: Eight research

groups, one Leibniz and one Weierstrass group, and one Focus Platform1, form the scientific body

of the institute. In their mission, they are supported by the departments for technical and admin-

istrative services. The Secretariat of the International Mathematical Union (IMU, see page 56),

hosted by WIAS, is a supportive institution for the international mathematical community. More-

over, WIAS hosts the German Mathematics Association DMV and the Society of Didactics of Math-

ematics GDM.

Research Groups:

RG 1. Partial Differential Equations

RG 2. Laser Dynamics

RG 3. Numerical Mathematics and Scientific Computing

RG 4. Nonlinear Optimization and Inverse Problems

RG 5. Interacting Random Systems

RG 6. Stochastic Algorithms and Nonparametric Statistics

RG 7. Thermodynamic Modeling and Analysis of Phase Transitions

RG 8. Nonsmooth Variational Problems and Operator Equations

Flexible Research Platform:

LG 4. Probabilistic Methods for Mobile Ad-hoc Networks

WG 1. Modeling, Analysis, and Scaling Limits for Bulk-Interface Processes

FP 1. Quantitative Analysis of Stochastic and Rough Systems

The organization chart on the following page gives an overview of the organizational structure of

WIAS in 2017.

1In the following, the terms “research group” will often be abbreviated by “RG”, “Leibniz group” by “LG”, Weierstrass group
by “WG”, and Focus Platform by “FP”.
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2.2.2 Main Application Areas

The research at WIAS focused in 2017 on the following main application areas, in which the insti-

tute has an outstanding competence in modeling, analysis, stochastic treatment, and simulation:

– Conversion, Storage, and Distribution of Energy

– Flow and Transport

– Materials Modeling

– Nano- and Optoelectronics

– Optimization and Control in Technology and Economy

– Quantitative Biomedicine

To these areas, WIAS made important contributions in the past years that strongly influenced the

directions of development of worldwide research.

2.2.3 Contributions of the Groups

The eight Research Groups, the Leibniz Group, and the Weierstrass Group form the institute’s basis

to fully bring to bear and develop the scope and depth of its scientific expertise. A Focus Platform,

on the other hand, represents an interesting topical focus area in its own right and operates under

the umbrella of one or more Research Groups. The mathematical problems studied by the groups

originate both from short-term requests arising during the solution process of real-world problems,

and from the continuing necessity to acquire further mathematical competence as a prerequisite

to enter new fields of applications, calling for a well-directed long-term basic research in mathe-

matics.

The table gives an overview of the main application areas to which the groups contributed in 2017

in the interdisciplinary solution process described above.

Main application areas RG 1 RG 2 RG 3 RG 4 RG 5 RG 6 RG 7 RG 8 LG 4 WG

Flow and Transport

Materials Modeling

Nano- and Optoelectronics

Quantitative Biomedicine

Conversion, Storage, and 
Distribution of Energy

Optimization & Control in 
Technology and Economy

In the following, special research topics are listed that were addressed in 2017 within the general

framework of the main application areas.
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Conversion, Storage and Distribution of Energy

This main application area takes account of an economic use of energetic resources based on

Fig. 1: Sketch of a
lithium-ion battery (LiFePO4)

mathematical modeling and optimization. With regard to future developments, sustainability and

aspects of electro-mobility play a major role. Lithium-ion batteries belong to the key technologies

for storing renewable energy. Charging time and capacity of such batteries are decisively deter-

mined by stochastic processes within multi-particle electrodes as well as by transportation pro-

cesses in the electrolyte and on the electrodes surface. The modeling and stochastic analysis of

multi-particle electrodes is realized by a cooperation of RG 6 and RG 7. RG 3 and RG 7 cooperate

in modeling the transport processes and their evaluation by simulations. A further focus is put

on the phase-field modeling of the liquid phase crystallization of silicon in order to develop opti-

mized thin-film solar cells in the framework of an interdisciplinary research project. Furthermore,

RG 4 and RG 8 investigate aspects of uncertainty in energy management via stochastic optimiza-

tion or uncertainty quantification, respectively. Here, the emphasis is put on gas networks and

renewable energies with uncertain parameters given, e.g., by demand, precipitation, or technical

coefficients. In this context, new perspectives in modeling and analyzing equilibria in energy mar-

kets with random parameters and when coupling markets with the underlying physical or contin-

uum mechanical properties of the energy carrier in a power grid open up.

Core areas:

� Light-emitting diodes based on organic semiconductors (OLEDs; in RG 1 and RG 3)

� Modeling of experimental electrochemical cells for the investigation of catalytic reaction kinet-

ics (in RG 3)

� Lithium-ion batteries (in RG 3 and RG 7)

� Modeling and analysis of coupled electrochemical processes (fuel cells, batteries, hydrogen

storage, soot; in RG 1, RG 3, RG 5 (planned), and RG 7)

� Nonlinear chance constraints in problems of gas transportation (in RG 4)

� Parameter identification, sensor localization, and quantification of uncertainties in switched

PDE systems (in RG 8)

Flow and Transport

Flow and transport of species are important in many processes in nature and industry. They are gen-

Fig. 2: Flow through an
aortic arch

erally modeled by systems consisting of partial differential equations. Research groups at WIAS are

working at the modeling of problems, at the development and analysis of discretizations for par-

tial differential equations, at the development of scientific software platforms, and the simulation

of problems from applications. Aspects of optimization, inverse problems (parameter estimation),

and stochastic methods for flow problems become more and more important in the research of the

institute.

Core areas:

� Thermodynamic models and numerical methods for electrochemical systems (in RG 1, RG 3,

and RG 7)
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� Development and analysis of physically consistent discretizations (in RG 3)

� Modeling and numerical methods for particle systems (in RG 1, RG 3, and RG 5)

� Modeling of nanostructures of thin films (in RG 7)

� Computational hemodynamics (in RG 3 and RG 8)

� Scientific software platforms ParMooN and pdelib (in RG 3)

Materials Modeling

Modern materials increasingly show multi-functional capabilities and require precise and system-

Fig. 3: A realisation of a
many-body system showing
a small crystal in the lower
right corner

atically derived material models on many scaling regimes. To include theories from the atomistic to

the continuum description, multi-scale techniques are at the core in the derivation of efficient mod-

els that enable the design of new materials and processes and drive the development of new tech-

nologies. Combining stochastic and continuum modeling with numerical methods and the rigor of

mathematical analysis to address some of today’s most challenging technological problems is a

unique characteristic of the WIAS.

Core areas:

� Homogenization and localization in random media (in RG 1 and RG 5)

� Models of condensation and crystallization in interacting many-particle systems to help under-

stand metastability and ageing processes (in RG 3, RG 5, RG 6, and RG 7)

� Asymptotic analysis of nano- and microstructured interfaces (including their interaction with

volume effects; in RG 7 and WG 1)

� Dynamical processes in nonhomogeneous media (in RG 6 and RG 7)

� Material models with stochastic coefficients (in RG 1, RG 3, RG 4, RG 5, and RG 7)

� Modeling, analysis, and simulation of gas-solid and liquid-solid transitions (phase separation

with thermomechanical diffusion; in RG 7 and RG 5)

� Thermodynamically consistent electrochemical models of lithium-ion batteries and fuel cells

(in RG 3 and RG 7)

� Thermomechanical modeling of phase transitions in steels (in RG 4)

� Hysteresis effects (elastoplasticity, shape memory alloys, lithium batteries, hydrogen storage;

in RG 1 and RG 7)

� Modeling of elastoplastic and phase-separating materials including damage and fracture pro-

cesses (RG 1, RG 7, and WG 1)

� Analysis of local and nonlocal phase field models and their sharp-interface limits (applied to

thin-film solar cells and lithium-ion batteries; in RG 1, RG 7, and WG 1)

� Stochastic modeling of phase transitions (in RG 5)
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Nano- and Optoelectronics

Optical technologies count among the most important future-oriented industries of the 21st cen-

Fig. 4: Cross section through
an edge-emitting
germanium microstrip,
showing hole currents (color
and arrows) and optical
mode (red isolines) in the
optically active germanium
region under tensile strain

tury, contributing significantly to technological progress. They facilitate innovative infrastructures,

which are indispensable for the further digitalization of industry, science, and society.

Mathematical modeling, numerical simulation, as well as theoretical understanding of the occur-

ring effects are important contributions of WIAS to today’s technological challenges. A central topic

is the modeling and mathematical analysis of the governing equations and the simulation of semi-

conductor devices.

Core areas:

� Microelectronic devices (simulation of semiconductor devices; in RG 1 and RG 3)

� Mathematical modeling of semiconductor heterostructures (in RG 1)

� Diffractive optics (simulation and optimization of diffractive devices; in RG 2 and RG 4)

� Quantum mechanical modeling of nanostructures and their consistent coupling to macroscopic

models (in RG 1 and RG 2)

� Laser structures and their dynamics (multisection lasers, VCSELs, quantum dots; in RG 1, RG 2,

and RG 3)

� Fiber optics (modeling of optical fields in nonlinear dispersive optical media; in RG 2)

� Photovoltaics, OLED lighting, and organic transistors (in RG 1, RG 3, and RG 7)

� Mathematical modeling, analysis, and optimization of strained germanium microbridges (in

RG 1 and RG 8)

Optimization and Control in Technology and Economy

For planning and reconfiguration of complex production chains as they are considered in the Indus-

Fig. 5: Induction heat
treatment of a gear

try 4.0 paradigm as well as for innovative concepts combining economic market models and the

underlying physical processes, e.g., in energy networks, modern methods of algorithmic optimal

control are indispensable. In many of these problems different spatial and temporal scales can be

distinguished, and the regularity properties of admissible sets plays an important role.

Applications may range from basic production processes such as welding and hardening to the

design of diffractive structures and simulation tasks in process engineering industry to optimal

decision in financial environments such as financial (energy) derivatives, energy production, and

storage.

Core areas:

� Simulation and control in process engineering (in RG 3, RG 4, and RG 6)

� Problems of optimal shape and topology design (in RG 4)

� Optimal control of multifield problems in continuum mechanics and biology (in RG 3, RG 4, and

RG 7)
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� Evaluation of the quality of ad-hoc telecommunication systems in view of connectivity, mes-

sage routing, propagation of malware and capacity restrictions (in LG 4 and RG 5)

� Nonparametric statistical methods (image processing, financial markets, econometrics; in

RG 6)

� Realistic design of telecommunication models on street systems (in LG 4)

� Optimal control of multiphase fluids and droplets (in RG 8)

Quantitative Biomedicine

Quantitative Biomedicine is concerned with the modeling, analysis, simulation, or optimization of

Fig. 6: Signal detection in a
single-subject
finger-tapping experiment
using (left to right) (a)
standard Gaussian filter, (b)
structural adaptive
smoothing and Random field
theory (RFT), (c) structural
adaptive segmentation

various highly relevant processes in clinical practice. Not only the modeling of cellular, biochemi-

cal, and biomolecular processes, but also applications in medical engineering, such as the model-

ing, simulation, and optimization of prostheses or contributions to the area of imaging diagnostics,

are major focus topics.

At WIAS, mathematical models for a better understanding of haemodynamic processes are devel-

oped, analyzed, and simulated. These models are then employed for the prognosis or optimization

after medical interventions, using, e.g., model reduction and optimization techniques with partial

differential equations. Other foci are the modeling and analysis of time-based systems, e.g., car-

tilage reconstruction, calcium release, or medical image and signal processing. In the latter, clas-

sical tasks of image processing like registration, denoising, equalization, and segmentation, but

also (low-rank/sparse) data decomposition and functional correlations, e.g., in neurological pro-

cesses, are studied. These processes typically lead to complex, nonlinear, or nonsmooth inverse

problems where often also statistical aspects play a central part.

Core areas:

� Numerical methods for biofluids and biological tissues (in RG 3 and RG 8)

� Branching processes in random media (in RG 5)

� Genetic evolution (in RG 5)

� Image processing (in RG 6 and RG 8)

� Dynamics of learning processes in the neurosciences (in RG 6)

� Modeling of high-resolution magnetic resonance experiments (in RG 6)

� Methods of diagnosis of neurodegenerative diseases (in RG 6)

� Free boundary models for actin filament networks (in RG 7)

� Modeling of a nanopore for the analysis of DNA-type macromolecules (in RG 7)
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2.3 Equal Opportunity Activities

The institute is committed to a policy of equal opportunity. It strives to increase the percentage of

women within the scientific staff and, especially, in leading positions.

In 2017, WIAS successfully renewed the berufundfamilie audit certificate in a re-auditing process

for three years. With the certificate, the institute documents its commitment to a family-friendly

personnel policy, adapted to the various life stages. The new agreement on objectives is aiming

to optimize the already high standards in family-friendly arrangements. A cooperation with the

family service agency benefit@work was established and will be further adapted to meet the needs

of WIAS’s staff. For organizing the work in a family-conscious way, the project management tool

JIRA was introduced in the directorate, in the administration, and among scientific staff. Especially

for staff members interactive presentations on various focal topics held by external experts are

offered regularly.

Fig. 1: Prof. Dietmar Hömberg, in
charge in 2017 of the field of family
and work in the directorate of WIAS
(upper row, third from left), at the
Certificate Conferment Ceremony of
the audit berufundfamilie in Berlin

In December 2017, WIAS’s equal opportunities officer and her substitute held the second women’s

assembly. They gave the female employees a report on their work during the year and answered

questions. As a part of the audit berufundfamilie, WIAS’s equal opportunities officer and her sub-

stitute carried out the 2017 staff survey. The results are currently being examined. On May 5,

Franziska Flegel (RG 5) and Ilka Kleinod (equal opportunities officer) participated in the 2017 Fe-

male Ph.D. Students’ Seminar of Forschungsverbund Berlin. The topic was “Communication and

Conflict Management for Women”. In April, WIAS again took part in the “Girls’Day – Mädchen

Zukunftstag”, an initiative of the German Federal Ministry of Family, Senior Citizens, Women and

Youth in collaboration with the Federal Ministry of Education and Research. Four girls followed

various lectures and asked many questions, mentored by scientists from WIAS.
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2.4 Grants
The raising of grants under scientific competition is one of the main indicators of scientific excel-

lence and thus plays an important role in the efforts of WIAS. In this task, WIAS was very success-

ful in 2017, having raised a total of 3.053 million euros, from which 50 additional researchers

(+ 7 outside WIAS; Dec. 31, 2017) were financed. In total in 2017, 24.25 percent of the total bud-

get of WIAS and 43.22 percent of its scientific staff originated from grants.

For a detailed account of projects funded by third parties, the reader is referred to the appendix,

Section A.2 Grants below on pages 108ff.

2.5 Participation in Structured Graduation Programs
Graduate School Berlin Mathematical School (BMS)
Berlin’s mathematicians are proud that, after its successful installation in 2006, a second funding

period was granted to this graduate school in Summer 2012 for 2013–2017, for the excellent work

done since its inception. The BMS is jointly run by the three major Berlin universities within the

framework of the German Initiative for Excellence. The BMS is funded with more than one million

euros per year to attract excellent young Ph.D. students from all over the world to the city. Many

members of WIAS are contributing to the operations of the BMS.

International Research Training Group (IRTG) 1792 High Dimensional Non Stationary Time
Series Analysis of the DFG
In October 2013, this International Research Training Group took up its work for 4.5 years. The

faculty consists of internationally renowned scholars from Humboldt-Universität zu Berlin, WIAS

(RG 6), Freie Universität Berlin, the German Institute for Economic Research (DIW), and Xiamen

University in China. In December 2017, the IRTG was prolongated until September 2022.

2.6 Software
Scientific software is a tool to evaluate models and algorithms investigated at WIAS. Moreover,

software helps to transfer research results to other scientific fields, to industry, and to the gen-

eral public. The underlying problems often pose very specific and advanced requirements, which

cannot be satisfied by standard software that is widely available; hence, the development of al-

gorithms and scientific software belongs to the scientific tasks of WIAS. As a consequence, WIAS

is working on the implementation of rules of good scientific practice in the realm of software de-

velopment. Software-based publications in specific journals and as WIAS Technical Reports are

encouraged. The production, dissemination, and sale of software is not part of the core duties of

WIAS. Nevertheless, several codes developed at WIAS are distributed outside of WIAS and have

earned a good reputation. See page 183ff. for a list of software packages that WIAS makes avail-

able. Licensing models depend on the specifics of the corresponding projects. Codes are offered

under open source and proprietary licenses as well as combinations thereof.

2With scholarship holders.
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3.1 International Mathematical Union (IMU)

Since January 2011, the Secretariat of the International Mathematical Union (IMU) has been perma-

nently based in Berlin, Germany, at the Weierstrass Institute. Under the supervision of the IMU Ex-

ecutive Committee, the Secretariat runs IMU’s day-to-day business and provides support for many

IMU operations, including administrative assistance for the International Commission on Mathe-

matical Instruction (ICMI) and the Commission for Developing Countries (CDC) as well as mainly

technical assistance for the Committee on Electronic Information and Communication (CEIC) and

the Committee for Women in Mathematics (CWM). The IMU Secretariat also hosts the IMU Archive.

A Memorandum of Understanding and a Cooperation Agreement provide the legal basis of the

relationship of IMU and WIAS.

Staff members:

Alexander Mielke, Head of the Secretariat and IMU Treasurer. A. Mielke is a professor at Humboldt-

Universität zu Berlin, Deputy Director of WIAS, and head of Research Group 1 at WIAS. In his

function as the head of the secretariat, he is responsible for the IMU Secretariat as a separate

unit within WIAS. He was appointed as IMU Treasurer by the IMU Executive Committee and is

responsible for all financial aspects, including collecting dues, financial reports, and drafting

the budget of IMU.

Sylwia Markwardt, Manager of the Secretariat. S. Markwardt’s responsibilities include to head

and supervise all administrative operations of the secretariat and actively participate in the

implementation of the decisions and duties of the IMU Executive Committee and the IMU

General Assembly, which is done in close cooperation with the IMU Secretary. She commu-

nicates with the IMU member countries, drafts written materials, writes minutes and reports,

and supervises the IMU website. Her tasks include the steering and control of the secre-

tariat’s business operations and IMU finances, and monitoring the deadlines.

Lena Koch, ICMI/CDC Administrator. L. Koch is responsible for supporting administratively the ac-

tivities of the Commission for Developing Countries and the International Commission on

Mathematical Instruction. She is, in particular, in charge of promoting the work of both com-

missions, managing their web presence including public relations and communication, han-

dling grant applications and support programs.

TBA, IMU Accountant. The IMU Accountant is, under the supervision of the IMU Treasurer, in charge

of executing the financial decisions of IMU which includes the budget management of the

IMU Secretariat, application for, and supervision of third-party funds, handling membership

dues, all financial aspects of grants, and administering expense reimbursements.
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Birgit Seeliger, IMU Archivist. B. Seeliger is responsible for the IMU Archive and in charge of devel-

oping a strategy for preserving and making accessible paper documents, photos, pictures,

and IMU artifacts and supporting IMU’s decision process concerning the electronic archiving

of IMU’s steadily increasing amount of digital documents.

Frank Klöppel, IT and Technical Support. F. Klöppel is responsible for running the IT operations of

the IMU Secretariat. This includes taking care of running the hardware and software infra-

structure, in particular, the IMU server and mailing lists and planning the extension of IMU’s

IT services for its members, commissions, and committees.

Ramona Fischer, Project Assistant. R. Fischer is on leave.

Theresa Loske, Project Assistant. T. Loske’s task is to support the administrative work of the IMU

Secretariat, in particular, to assist in the organization and wrap-up of the International

Congress of Mathematicians in 2018 and the initialization of new CDC programs.

The IMU Secretary

Helge Holden is the IMU Secretary. He holds a professorship at the Norwegian Uni-

versity of Science and Technology, Trondheim, and at the Center of Mathematics

for Applications, University of Oslo, Norway. He is in contact with the IMU Secre-

tariat regularly via electronic communication and visits the office about once a

month.

The Secretary is responsible for conducting the ordinary business of the Union

and for keeping its records.

3.2 Promotion of Women in Mathematics

Marie-Françoise Roy (CWM)

Women mathematicians are increasingly visible in the mathematical community. The 2014 Interna-

tional Congress of Mathematicians played a special role in this process when Maryam Mirzakhani

became the first woman ever to be awarded the Fields Medal.

The IMU Committee for Women in Mathematics (CWM), created in 2015, is the only committee

whose main concern is the issues for women in mathematics at the world level. As such, it has an

important role and responsibility. Change takes generations: There are gradual improvements, but

with each step forward come new challenges. Networking, both inside the mathematical commu-

nity and more globally, seems to be key to driving change.

Communicating through CWM website and CWM ambassadors. CWM’s website http://www.

mathunion.org/cwm/ plays a central role in CWM’s work. Launched in August 2014 by the
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IMU following an initiative of its President Ingrid Daubechies, its aim is to provide an internation-

ally based resource for women mathematicians. It is a crucial means of communication and is kept

updated and enriched by the committee.

Fig. 1: CWM Poster

CWM has also established about 100 ambassadors worldwide, each of whom disseminates infor-

mation such as CWM funding calls, and keeps CWM informed about relevant activities or initia-

tives.

Supporting networks through the CWM annual call. The main initial goal set by CWM was to

help establish and foster networks of women mathematicians especially in Asia, Latin America,

and Africa. To this end, it has made three calls offering sponsorship, in 2016, 2017, and 2018.

The 2018 call elicited 55 applications, of which 10 were approved. Most grants are devoted to

the above aims. Many of the initiatives take the form of a meeting with both a mathematical and

a career development part. This is the case for two regional meetings of the African Women in

Mathematics Association (AWMA), one in Addis Ababa (Ethiopia) for East Africa and one in Ibadan

(Nigeria) for West Africa, and also for the second Central Asia Women in Mathematics Association

meeting in Uzbekistan. Support for the Indian Women in Mathematics Association will enable the

participation of women from the South Asian Association for Regional Co-operation at the IWM

meeting at Shiv Nadar University in Uttar Pradesh. The first workshop of “Women in Mathematics

in the Balkan Region” taking place in Skopje (Macedonia) will involve several neighboring coun-

tries. A workshop in El Salvador (supported by the Vice Minister of Science and Technology and

the ICSU Regional Office of Latin America and the Caribbean) entitled “Why Mathematics?: Encour-

aging Girls to Pursue the Dream of Becoming Teachers or Researchers in this Discipline” will be

focussed on less developed Central American countries such as Guatemala, Honduras, Nicaragua,

the Dominican Republic, El Salvador, and Panama. An activity inspired by the series of meetings

“Women in . . . ” (see for example “Women in Numbers”) held at the Banff International Research

Station, is planned for the first time in South America, in Uruguay.

The African Women in Mathematics Association will design portraits of African women mathemati-

cians to be used for promoting mathematics among young African women. The portraits will be

posted on the AWMA website and published as a booklet.

Two further events are taking place in Europe, an Abdus Salam International Centre for Theoretical

Physics (ICTP) school in Trieste (Italy) on Dynamical Systems, with all-female organizers and lec-

turers, and the European Women in Mathematics General Meeting in Graz (Austria). In both cases,

the CWM grant will be used to support the attendance of women from developing countries.
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Fig. 2: Left: CWM meeting in
Cortona 2015. Right: Gender
Gap in Science project in
Paris 2017

Leading a pluridisciplinary project on the Gender Gap in Science. In 2016, the International

Council for Science (ICSU) announced a new grant program to address long-standing priorities for

ICSU members in developing science education, outreach, and public engagement activities, and

to mobilize resources for international scientific collaboration.

The IMU is leading the project “A Global Approach to the Gender Gap in Mathematical, Computing

and Natural Sciences: How to Measure It, How to Reduce It?”, one of the three projects approved

by ICSU. Its coordinator is Marie-Françoise Roy, CWM chair. There are ten partner organizations:

six ICSU members (International Union of Pure and Applied Chemistry, International Union of Pure

and Applied Physics, International Astronomical Union, International Union of Biological Sciences,

International Council for Industrial and Applied Mathematics, and International Union for History

and Philosophy of Science and Technology), UNESCO, as well as Gender in Science, Innovation,

Technology and Engineering, the Organization for Women in Science in the Developing World, and

the Association for Computing Machinery.

The motivation for the project comes from the persistence of a significant gender gap at all levels.

Barriers to achievement by women persist, especially in developing countries, despite mathemat-

ical, computing, and natural sciences having long and honorable traditions of participation by

highly creative female contributors.

The project will produce sound data, including trends (since the situation for women continues to

change around the world, with some negative developments), to support the choices of interven-

tions which ICSU and member unions can feasibly undertake. It will provide evidence for informed

decisions and provide easy access to materials proven to be useful in encouraging girls and young

women in these fields. Regional information about careers, jobs, and salaries will be included.

A Joint Global Survey is planned to reach 45,000 respondents in more than 130 countries using at

least 10 languages, while a Joint Study on Publication Patterns will analyze comprehensive meta-

data sources corresponding to publications of more than 500,000 scientists since 1970. Contrasts

and common ground across regions and cultures, less developed and highly developed countries,

men and women, mathematical and natural sciences, will be highlighted.
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Organizing the first World Meeting for Women in Mathematics (WM) 2 . CWM is organizing the

Fig. 3: Logo of the World
Meeting for Women in
Mathematics

first World Meeting for Women in Mathematics – (WM) 2 , a satellite event of the International

Congress of Mathematicians (ICM) 2018, Rio de Janeiro. It will bring together female mathemati-

cians from all over the world with a strong focus on Latin America. Although there is currently no

formal network for women mathematicians in Latin America, several initiatives have taken place

from 2015–2017, in Brazil, Mexico, Chile, and Colombia, most with the encouragement of CWM. It

is anticipated that (WM) 2 will lead to better coordination of activities for women mathematicians

in this part of the world. The program includes research talks, group discussions about gender is-

sues in mathematics, a panel discussion, and poster presentations. There will also be a tribute to

Maryam Mirzakhani whose premature death in July 2017 saddened us all.

3.3 Events of major significance in 2017

Grants

IMU won ICSU grant 2017–2019. IMU’s application to ICSU (International Council for Science)

was successful. The project proposal “A Global Approach to the Gender Gap in Mathematical, Com-

puting and Natural Sciences: How to Measure It, How to Reduce It?”, jointly led by IMU’s committee

CWM and IUPAC (International Union of Pure and Applied Chemistry), won a grant of 100,000 euros

per annum for three years. The adminstration of the grants funds is supported by the IMU Secre-

tariat.

Meetings

CWM meeting. The Committee for Women in Mathematics of the IMU met in the IMU Secretariat

from May 29–30, 2017.

IPC meeting ICMI Study 24. The International Program Committee for the ICMI Study 24 volume

met in the IMU Secretariat from November 13–15, 2017.

Events

WIAS Days 2017. The IMU Secretariat contributed to the program in the form of a presentation

and a poster informing on the responsibilities of the Secretariat.

Visit of the FVB Board of Trustees at the IMU Secretariat. On June 14, 2017, the Board of Trustees

of Forschungsverbund Berlin e.V. (FVB) held its meeting at WIAS. An item of the agenda was the visit

to the IMU Secretariat in order to present to the Board the activities and services provided by the

office for the international scientific community.
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WIAS Evaluation 2017. The IMU Secretariat contributed a survey poster presenting the Interna-

tional Mathematical Union (IMU), the support of the Secretariat to the IMU and IMU’s Commissions

and Committees, as well as the interaction of WIAS and IMU.

Heidelberg Laureate Forum. The fifth Heidelberg Laureate Forum (HLF) took place from Septem-

ber 24–29, 2017, in the city of Heidelberg, Germany. The HLF brings together winners of the Abel

Prize, the Fields Medal, the Nevanlinna Prize, and the Turing Award with outstanding young scien-

tists from all over the world for a one-week conference.

The IMU is a partner of the HLF. Among the participating laureates at the HLF 2017 who had been

awardees of the Fields Medal (FM) or the Nevanlinna Prize (NP) were: Sir Michael Francis Atiyah

(FM), Martin Hairer (FM), Shigefumi Mori (FM), Stephen Smale (FM), Daniel Spielman (NP), Madhu

Sudan (NP), Robert Endre Tarjan (NP), Leslie Valiant (NP), and Efim Zelmanov (FM).

Relaunch of the website of the IMU and IMU’s Commissions and Committees. After months of

intense work on redesigning and restructuring the web presentation of the IMU, the revamped

website went live on December 7, 2017.

Fig. 4: New website of the IMU

Participation of IMU Secretariat members in international events.

� IMU Executive Committee meeting, London, UK (S. Markwardt, A. Mielke)

� CDC meeting, Sussex, UK (L. Koch)

� Site visit General Assembly and ICM 2018, São Paulo and Rio de Janeiro, Brazil (S. Markwardt)

� ICMI Executive Committee meeting, Geneva, Switzerland (L. Koch)

� Heidelberg Laureate Forum, Heidelberg, Germany (S. Markwardt)
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List of guests at the IMU Secretariat

Date Guests Event

May 29 – 30 Carolina Araujo, Brazil; Bill Barton, New Zealand;

Petra Bonfert-Taylor, USA; Ari Laptev, Sweden;

Neela Nataraj, India; Marie Francoise Quedrago,

Burkina Faso; Ami Radunskaya, USA; Sujatha Ram-

dorai, Canada; Marie-Françoise Roy, France; Caro-

line Series, UK; Noh Sunsook, Republic of Korea;

Betul Tanbay, Turkey; John Toland, UK

CWM

June 14 Stefan Eisebitt, Germany; Peter A. Frensch, Ger-

many; Mark Gessner, Germany; Peter Gottstein,

Germany; Rainer Hammerschmidt, Germany;

Michael Heuken, Germany; Barbara Kaltenbacher,

Austria; Ulrich Krafft, Germany; Andreas Offen-

häusser, Germany; Joachim Wieland, Germany;

Thomas Zettler, Germany

Individual

visit

July 6 Konrad Fiedler, Austria; Peter Heil, Germany; Clau-

dia Herok, Germany; Barbara Kaltenbacher, Aus-

tria; Bernd Lietzau, Germany; Frank Reifers, Ger-

many; Hans-Peter Seidel, Germany; Brigitte Voit,

Germany; Jonas Wirth, Germany; Frank Wolf, Ger-

many

Individual

visit

Oct 31 – Nov 5 Bernard Hodgson, Canada ICMI Archive

Nov 6 Bernard Hodgson, Canada; Ragni Piene, Norway;

John Toland, UK; Wendelin Werner, Switzerland

IMU Office

Committee

Nov 13 – 15 Jill Adler, South Africa; Abraham Arcavi, Israel; Fer-

dinando Arzarello, Italy; Marianna Bosch, Spain;

Angel Ruiz, Costa Rica; Yoshinori Shimizu, Japan;

Renuka Vital, South Africa; Yan Zhu, China

ICMI Study 24
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4.1 Research Group 1 “Partial Differential Equations”

The mathematical focus of this research group is the analytical understanding of partial differen-

tial equations and their usage for the modeling in the sciences and in engineering. The theory is

developed in connection with well-chosen problems in applications, mainly in the following areas:

� Modeling of semiconductors; in particular, organic semiconductors and optoelectronic devices

� Reaction-diffusion systems, also including temperature coupling

� Multifunctional materials and elastoplasticity

The methods involve topics from pure functional analysis, mathematical physics, pure and applied

analysis, calculus of variations, and numerical analysis:

� Qualitative methods for Hamiltonian systems, gradient flows, or consistently coupled systems

� Multiscale methods for deriving effective large-scale models from models on smaller scales,

including models derived from stochastic particle systems

� Existence, uniqueness, and regularity theory for initial and boundary value problems in non-

smooth domains and with nonsmooth coefficients, thereby also including nonlocal effects

The qualitative study of partial differential equations provides a deeper understanding of the un-

derlying processes and is decisive for the construction of efficient numerical algorithms. Corre-

sponding scientific software tools are developed in cooperation with other research groups.

General methods for evolutionary systems

ERC project. The ERC-Advanced Grant Analysis of Multiscale Systems Driven by Functionals (Ana-

MultiScale) started in April 2011 and concluded in March 2017. The project group, which was

embedded in RG 1, involved about 5 researchers, whose task was to study evolutionary systems

driven by energy or entropy and to derive effective models for multiscale problems, e.g., via evolu-

tionary Gamma-convergence. The applications had their focus in material modeling and optoelec-

t
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Fig. 1: A wiggly energy U (z)
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lead to a stick-slip response
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tronics.

A major achievement emanated from joint work with researchers from Pavia and concerned the

development of a general existence theory for generalized gradient systems based on De Giorgi’s

energy-dissipation principle (EDP). This includes the definition of balanced-viscosity solutions and

the understanding of the jump behavior for systems in the limit of vanishing viscosity, which set-

tled a long-standing problem in treating vanishing-viscosity limits for rate-independent systems.

For such generalized gradient systems different notions of evolutionary Gamma-convergence were

developed to give a proper meaning to what it means that a family of gradient systems converges

to an effective gradient system. This led to the notion of EDP-convergence, and most recently to

relaxed EDP-convergence for wiggly-energy gradient systems; see Figure 1. Moreover, in collabo-

ration with RG 5 Interacting Random Systems, a relation between generalized gradient structures

and large-deviation principles for the underlying stochastic processes was discovered.
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For applications in nanophotonics a new gradient structure for dissipative quantum master equa-

tions was developed in [4]. It provides a thermodynamically consistent coupling mechanism for the

development of hybrid models combining classical drift-diffusion for charge carriers and quantum

dots; see the Scientific Highlights article on page 10.

During the running time of the ERC project AnaMultiScale, in addition to the PI and several WIAS

members, 14 different researchers were employed for a total of 223 months; and the research is

documented in one research monograph and about 60 papers in peer-reviewed journals.

Hellinger–Kantorovich distance. The concept of entropy transport problems is a natural gener-

alization of the theory of optimal transport problems. While the latter is restricted to probability

measures, the former applies to arbitrary non-negative and finite Borel measures of possibly un-

equal total mass. This theory was successfully developed in [3]. As a special case of this class of

problems, the Hellinger–Kantorovich distance, which can be seen as an interpolation between the

Kantorovich–Wasserstein distance and the Hellinger–Kakutani distance, and its geometry were

characterized. In particular, new geometric properties for the Hellinger–Kantorovich space were

obtained, including a two-parameter rescaling and reparametrization of the geodesics, local angle

condition, and some partial K-semiconcavity of the squared distance, that will be useful for prov-

ing the existence of metric gradient flows. The latter will provide new analytical results for classes

of scalar reaction-diffusion equations.

Oberwolfach Workshop. Together with Mark Peletier (Eindhoven) and Dejan Slepcev (Pittsburgh),

Fig. 2: Photo by Petra Lein,
Copyright: MFO

Alexander Mielke organized the Workshop “Variational Methods for Evolution” (November 12–18)

in the Mathematical Research Institute in Oberwolfach (MFO). The event brought together a broad

spectrum of researchers from calculus of variations, partial differential equations, metric geom-

etry, and stochastics, as well as applied and computational scientists. It focused on variational

tools, such as incremental minimization approximations, Gamma-convergence, optimal transport,

gradient flows, and large-deviation principles for time-continuous Markov processes.

Advances in parabolic regularity theory. In continuation of the joint work with A.F.M. ter Elst

(Auckland) on maximal parabolic regularity for non-autonomous problems, a theory was devel-

oped where not only the integrability power in the Lebesgue space Lq deviates from 2 but also

the index of differentiability differs from 1 . The motivation for the analysis are models for semi-

conductors with avalanche generation, where the nonlinearities depend on the gradient ∇u of the

densities as in

∂t u − div
(
µt∇u

)
= |∇u|2, u(0) = u0.

The extra challenge arises from the heterogeneities of the material, i.e., discontinuities of µ , and

from mixed boundary conditions, excluding the application of classical regularity theories.

By developing a suitable elliptic regularity theory for the divergence operator with heterogeneities

and exploiting Sneiberg’s extrapolation theorem, it was possible to show that the nonlinearities

are still locally Lipschitz functions in suitable interpolation spaces, like Bessel potential spaces

Hθ,q
Dir . In the former broad geometric context with heterogeneities, such interpolation results only

existed in the case q = 2 .
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Semiconductors

In this field, the group profits from a strong cooperation with RG 2 Laser Dynamics and RG 3 Numer-

ical Mathematics and Scientific Computing.

Funded by the Einstein Center for Mathematics Berlin (ECMath), the MATHEON subprojects D-OT1

and D-SE2 run until May 2017, and two new subprojects D-OT7 (together with RG 6 Stochastic Al-

gorithms and Nonparametric Statistics) and D-SE18 started in June 2017. Moreover, the group is

involved in the DFG Collaborative Research Center CRC 787 Semiconductor Nanophotonics: Mate-

rials, Models, Devices via subproject B4 “Multi-dimensional modeling and simulation of electri-

cally pumped semiconductor-based emitters” (jointly with research group RG 2 and Zuse Institute

Berlin). Here, the coupling of the van Roosbroeck system with a dissipative quantum master equa-

tion in Lindblad form led to a novel hybrid quantum-classical modeling approach that enables

a comprehensive description of quantum-dot devices on multiple scales; see the Scientific High-

lights article on page 10 and the report of RG 2.

The high competence in the field of semiconductors is expressed by the fact that group members

contributed two extended chapters to the “Handbook of Optoelectronic Device Modeling & Simu-

lation” [5]: Chapter 12 deals with nanowires, and Chapter 50 provides up-to-date numerical meth-

ods for drift-diffusion semiconductor models. Progress in the numerics for semiconductors with

non-Boltzmann statistics as well as in the development of the semiconductor device simulation

tool ddfermi is illustrated in detail in the research report of RG 3.

ECMath subproject D-SE2 “Electrothermal modeling of large-area organic light-emitting diodes”

studies organic semiconductor devices in close collaboration with the Dresden Integrated Center

for Applied Physics and Photonic Materials (IAPP) at TU Dresden. A thermistor model for the com-

plex electrothermal behavior of organic LEDs was established, where the balance equation for

the total current flow of p(x) -Laplacian type is coupled to a heat flow balance where the right-

hand side is only in L1. Besides analytical investigations concerning existence and regularity of

solutions, a structure-preserving hybrid finite-volume/finite-element scheme was derived that re-

spects the maximum principle for the current flow equation and the positivity of temperature.

Fig. 3: Simulated current
densities and temperature
distribution in an OLED for
different applied voltages
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Fig. 2 a) Simulated inhomogeneous current density and b) temperature distribution in a
horizontal cross section of the OLED stack at values of an average current density (total current
over anode devided by anode area) of 400, 600, 800, and 1000 mA/cm2. c) Values for current
density and temperature at cut along symmetry line of the horizontal cross-section, dashed
lines correspond to the isothermal case where self-heating is neglected, d) shows corresponding
temperature distribution. e) Self-consistent current-voltage characteristics in comparison to
the isothermal one.

total current. For increased total current they show strong spatial inhomogeneities
which can be observed in Fig. 2c,d showing a cut along the symmetry line of the
horizontal cross-section. For comparison, a purely isothermal simulation is added
in Fig. 2c,e.

The global NDR behavior, as observed in the S-shaped characteristics in Fig. 1
(right), has its origin in the appearance of local NDR zones in the organic trans-
port layers. In particular, our simulations reveal a pronounced spatial propagation
of local NDR zones for growing total current: Fig. 3 shows this e↵ect in the elec-
tron transport layer (top) and the hole transport layer (bottom) for increasing
total currents. The black lines represent the sign change of the local di↵erential
resistance plotted over the temperature distribution. It is clearly visible that NDR
zones propagate laterally through the device starting in the electron transport
layer for moderate total current, and eventually in the hole transport layer at
higher total currents. But this e↵ect did not appear in the recombination layer
in our simulations. A propagation of local NDR zones was already observed in
Fischer et al. (2014) using electrothermal circuit simulations of large-area OLEDs.
However, our PDE approach is far superior when multiple layers are considered,

By extending the model to multiple layers with parallel nonlinear conductivity laws, which also take

into account diode-like behavior in recombination zones, and additionally using a path-following
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technique, the developed simulation tool is able to reproduce the experimentally observed elec-

trothermal behavior of organic LEDs; see [2]. Figure 3 shows spatial distributions, and Figure 4

displays typical S-shaped current-voltage relations.

Fig. 4: Simulated S-shaped
current-voltage relations for
different thermal
outcoupling

The subproject D-SE18 “Models for heat and charge-carrier flow in organic electronics” started in

June 2017 and is concerned with a more detailed description of the specific features of organic

semiconductor devices. Within the device simulation tool ddfermi, the van Roosbroeck system

is generalized via Gauss–Fermi statistics and incorporates new charge-carrier mobility functions

that result from a numerical solution of the master equation for hopping transport in a disordered

energy landscape with a Gaussian density of state.

Material modeling

The research in this field was done in cooperation with RG 5 and the WG Modeling, Analysis and

Scaling Limits for Bulk-Interface Processes and was driven by subprojects of the DFG Collabora-

tive Research Centers CRC 910 Control of Self-organizing Nonlinear Systems: Theoretical Methods

and Concepts of Application and CRC 1114 Scaling Cascades in Complex Systems. One special

highlight was the Workshop “Homogenization Theory and Applications” (HomTAp, October 4–6),

which focused on periodic and stochastic homogenization and on numerical methods for multi-

scale problems. Another highlight was the CRC 1114 Spring School “Methods for Particle Systems

with Multiple Scales” (May 29 – June 2) at WIAS, which was organized by Alexander Mielke and

Michel Renger (RG 5) and which gathered 30 young researchers.

Multiscale problems. Subproject C05 “Effective models for interfaces with many scales” of CRC

Fig. 5: Cantor set of order 5
as model for geological
network of faults and cracks

1114 deals with evolution equations having a gradient structure and describing problems with

two or more interacting physical scales. The focus lies on the development of mathematical tools

that help to capture the influence of microscopic effects on the macroscopic level of observation.

A major field of application are problems from geoscience. Here, the scales range from tiny cracks

on the level of 10−3 m to large faults on the level of 103 km including virtually all sizes of faults in

between. While rock is an elastic medium, so-called stick-slip motion along the cracks is observed,

which is basically driven by shear forces and friction.

Clearly, numerical methods cannot resolve the geometrical structures over the whole range of

scales, which differ by a factor of 109 . Due to the continuum of scales, classical methods fail

for the analytical study of multiscale problems. In C05, an ansatz called fractal homogenization

was proposed that allows one to show that the influence of small scales diminishes exponentially.

Numerical experiments by Ralf Kornhuber and Joscha Podlesny (FU Berlin) show that the analyti-

cal results indeed provide good approximations. A suitable mathematical model for the geometric

setting are Cantor-like sets with a fractal structure such as sketched in Figure 5.

Traveling waves in periodic media. Within subproject A5 “Pattern formation in systems with mul-

tiple scales” of CRC 910 and in cooperation with Pavel Gurevich (FU Berlin), traveling pulse solu-

tions were studied in FitzHugh–Nagumo systems with rapidly oscillating coefficients [1]. Based on
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previous results, a two-scale limit system was identified in the vicinity of vanishing period lengths.

It was then proved that existence and stability of the corresponding two-scale pulse solutions fol-

low via an explicit representation from well-known results on FitzHugh–Nagumo systems with con-

stant coefficients. For certain parameter regimes, it was possible to show that pulses, i.e., the

excitation and relaxation of the activator u , can still propagate, although the inhibitor V changes

sign and vanishes on average; see Figure 6.

Fig. 6: Left: solution (uε, vε)
of original system. Center:
two-scale pulse solution
(u, V ) of the limit system
with averaged inhibitor V .
Right: V -component in
two-scale space.

Jointly with subproject B5 in CRC 910 (Physikalisch-Technische Bundesanstalt), anti-symmetrically

coupled Swift–Hohenberg equations were investigated. With the help of amplitude equations, it

was possible to find local controls for globally competing patterns, namely left and right traveling

waves, as well as Turing patterns.

Mathematical models as research data

Mathematical modeling and simulation (MMS) has now been acknowledged as an essential part

of the scientific work in many disciplines, which is reflected in the fact that the Leibniz Association

has established the “Leibniz Network MMS”. In general, simulations in MMS are characterized by

possibly huge amounts of data and software used for the relevant research. In order to ensure the

reproducibility as well as the re-usability of scientific results, the long-term storage and accessibil-

ity of the involved research data are required. Repositories and information services for numerical

data such as DataCite exist or are emerging. Recently, also software is categorized as research

data, and information services on mathematical software, like swMath, have been developed.

However, data and software alone are not enough to fully characterize the research data for sci-

Fig. 7: Components of
research data in modeling
and simulation:
� mathematical models,
� simulation software, and
� numerical data

entific results: They can only be correctly interpreted and used if the corresponding mathematical

models are treated as a third pillar and are explicitly linked to both; see Figure 7.

Finding appropriate representations for models is far less obvious than for data and software. Cur-

rently, model description occurs in scientific publications via a mixture of formulae and text, which

is rigorous but informal, creates ambiguity and potential incompleteness, is less reproducible, and

often leads to duplication of existing work. The aim is to find a representation that is suited for cre-

ating a “model repository” in analogy to those for data and software. In collaboration with RG 6,

FAU Erlangen-Nürnberg (Michael Kohlhase) and FIZ Karlsruhe (Wolfram Sperber), a new machine-

actionable, but human-understandable representation of mathematical models based on Model

Pathway Diagrams (MPD) was developed; see [6]. MPDs specify the physical quantities and the re-

lations between them and can be represented in a special machine-readable description language

for mathematical documents. This enables the unique identification of mathematical models, the

automatic derivation of relationships between them, and the modular creation of new models from

existing ones, as well as the development of semantic services for them.

Annual Research Report 2017



4.1 RG 1 Partial Differential Equations 69

Further highlights of 2017

Foundation of the Weierstrass Group (WG). As one form of the new flexible research platforms at

WIAS, the WG Modeling, Analysis and Scaling Limits for Bulk-Interface Processes was established

on April 1, 2017. It is headed by Marita Thomas, a former member of RG 1.

Habilitation. Karoline Disser was awarded her habilitation for the thesis “Optimal elliptic and max-

imal parabolic regularity in non-smooth settings and applications to bulk-interface processes”, on

October 18, 2017, at Humboldt-Universität zu Berlin.

Gesellschaft für Angewandte Mathematik und Mechanik (GAMM). Marita Thomas and Maria

Neuss-Radu (Erlangen) jointly organized the Section “Applied Analysis” at the Annual GAMM con-

ference in Weimar, March 19–23, 2017. Moreover, Markus Mittnenzweig was elected GAMM Junior

for a period of three years.

Research internship. The Iranian bachelor student Shima Aflatounian from Toosi University of Tech-

nology was supervised by Oliver Marquardt in the DAAD exchange program IAESTE (International

Association for the Exchange of Students for Technical Experience). She carried out model studies

for semiconductor nanostructures.

Representative for disabled employees. Hans-Christoph Kaiser was elected deputy spokesman of

the representative body for disabled employees of the Leibniz Association.
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4.2 Research Group 2 “Laser Dynamics”

The research of this group is devoted to the study of mathematical problems that appear in non-

linear optics and optoelectronics. The research activities include mathematical modeling, theoret-

ical investigation of fundamental physical effects, implementation of numerical methods, efficient

modeling and simulation of complex devices, and the development of related mathematical theory,

mainly in the field of dynamical systems.

The research group contributes to the application-oriented research topics dynamics of semicon-

ductor lasers and pulses in nonlinear optical media. External funding was received in 2017 within

the Research Center MATHEON (subproject D-OT2 “Turbulence and extreme events in nonlinear op-

tics”), the DFG Collaborative Research Center 787 Semiconductor Nanophotonics: Materials, Mod-

els, Devices (subprojects B4 “Multi-dimensional modeling and simulation of electrically pumped

semiconductor-based emitters”, jointly with RG 1 Partial Differential Equations and Zuse Institute

Berlin, and B5 “Effective models, simulation and analysis of the dynamics in quantum-dot de-

vices”), as well as the DFG Collaborative Research Center 910 Control of Self-organizing Nonlin-

ear Systems: Theoretical Methods and Concepts of Application (subproject A3 “Activity patterns in

delay-coupled systems”, jointly with Serhiy Yanchuk, TU Berlin). Furthermore, RG 2 established a

close collaboration with industry in the framework of the BMBF funding measure “Efficient high-

performance laser beam sources” (EffiLAS), as a subcontractor of Ferdinand Braun Institute for

High Frequency Technology (FBH) in the projects HoTLas (on high-performance efficient and bril-

liant broad-area diode lasers for high ambient temperatures) and PLUS (on pulse lasers and scan-

ners for LiDAR applications – automotive, consumer, robotic), as a partner in the EU framework EU-

ROSTARS project E!10524 “High Power Composites of Edge Emitting Semiconductor Lasers” (HIP-

Lasers), as well as in direct industry collaborations with TRUMPF Laser GmbH and others.

Dynamics of semiconductor lasers

The group intensified its acitivties in the modeling, simulation, and analysis of high-power broad-

area edge-emitting semiconductor lasers (BA lasers), which resulted in the further development of

the software kit BALaser. In particular, the modeling and efficient implementation of models for in-

homogeneous current spreading in BA lasers was performed in close collaboration with FBH, RG 1

Partial Differential Equations, and RG 3 Numerical Mathematics and Scientific Computing, within

project HoTLas; see Figure 1 on the next page. Furthermore, heating-induced inhomogeneous re-

fractive index effects in BA lasers were studied in close collaboration with FBH and TRUMPF Laser

GmbH. Within the project PLUS, nonlinear effects in pulsed high-power BA distributed Bragg re-

flector (DBR) lasers, as two-photon absorption and gain compression, were implemented, sim-

ulated, and analyzed. Within the EUROSTARS HIP-Lasers project, the modeling, implementation,

simulation, and analysis of high-power laser systems consisting of BA lasers with photonical crys-

tal external cavities were performed in collaboration with Monocrom (Vilanova, Spain), Femtika

(Vilnius, Lithuania), UPC (Barcelona, Spain), Raab-Photonik GmbH (Potsdam) and RG 4 Nonlinear

Optimization and Inverse Problems. On the basis of further developments of the software pack-

age LDSL-tool, simulation and analysis of multisection semiconductor lasers and coupled laser
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systems, including different configurations of DBR lasers and ring lasers with several branches of

filtered optical feedback, were performed (collaboration with TU Moldova, FBH, and VU Brussels).

A highlight was the appearance of the book chapter [1].
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[V] Fig. 1: Current spreading in two different
BA lasers (left, right). Top: Fermi potential
along the p-doped regions. Middle panels:
Carrier density and Fermi potential in the
active zone ( y = 0 ). Lower panels:
Inhomogeneous carrier diffusion and
current density according to different
modeling approaches. From RADZIUNAS ET

AL., Efficient coupling of the
inhomogeneous current spreading model
to the dynamic electro-optical solver for
broad-area edge-emitting semiconductor
devices, Opt. Quantum Electron., 49
(2017), pp. 332/1–332/8.

A distributed delay differential equations model that incorporates the effect of dispersion in mul-

timode lasers was proposed and applied to study long-cavity lasers that operate in the Fourier

domain mode-locked regime [2]. It was demonstrated that while in the normal dispersion regime

both the experiment and the theory show a stable operation, a modulation instability can lead to

the degradation of the output characteristics of the laser in the anomalous dispersion regime.

Fig. 2: Space-time diagram
of the bound pulse train
regimes in a four-laser (a)
and a two-laser (b) array

Dynamics of arrays of nearest-neighbor coupled mode-locked lasers, each generating a periodic se-

quence of short pulses, were studied using a set of coupled delay differential equations. Regimes

with sequences of clusters of closely packed pulses were found on that basis, which occur due

to a balance of attraction and repulsion between them; see Figure 2. These regimes are different

from the pulse bound states reported earlier in different laser, plasma, chemical, and biological

systems. A simplified analytical description was developed based on the derivation and analysis

of reduced pulse interaction equations.

Electrically driven quantum light sources based on semiconductor quantum dots are key elements

for applications in quantum communication and quantum information science. The design of elec-

trically driven quantum light sources, such as single-photon emitters and sources of entangled

photon pairs, asks for novel modeling approaches that combine classical device physics with

models from cavity quantum electrodynamics. Within the framework of the CRC 787 Semicon-

ductor Nanophotonics, a hybrid-quantum classical modeling approach was developed that self-

consistently couples the van Roosbroeck system for macroscopic charge transport with a Marko-

vian quantum master equation in Lindblad form that describes the dynamics of a quantum me-

chanical many-body problem [3]. The approach allows to compute the decisive quantum-optical

figures of merit, such as, e.g., the second-order intensity correlation function, along with the spa-

tially resolved charge transport in a unified framework. A particular strength of the hybrid model is

its consistency with fundamental axioms of (non-)equilibrium thermodynamics; see the Scientific

Highlights article on page 10 for details.

Annual Research Report 2017



72 4 Research Groups’ Essentials

Pulses in nonlinear optical media

Pulses in optical fibers are subject to degradation, due to, e.g., dispersion and attenuation. An

attractive nondestructive compensation of this unwanted degradation is to support these pulses

by an additional pump wave, which offers a way to all-optical pulse control. Pump parameters can

be used to remove the negative effect, providing a suitable interaction between these pulses. The

compensation, however, may turn out to be unstable, as shown in Figure 3 (left).

Fig. 3: Left: An instability
develops, resulting in
sudden changes in the pulse
amplitude and trajectory.
Right: The soliton is
captured by the pump wave
in a stable manner.

Reference [4] describes interactions like in Figure 3, by introducing a reduced dynamical system

for the soliton parameters. An optical pulse, which propagates without changes, corresponds to

an equilibrium state of the reduced system. This circumstance greatly simplifies both the stability

analysis and the search for pump waves that support pulses in a stable manner, as shown in Fig-

ure 3 (right). The proposed theory shows large agreement with numerical simulations of the full

model.

The efficient generation and detection of radiation in the terahertz regime of the electromagnetic

spectrum remains a technological challenge to date. Significant progress in this direction could

recently be achieved by exploiting the nonlinear interaction of intense, two-color laser pulses with

gases. These pulses induce pronounced sub-cycle electron dynamics, with the corresponding emis-

sion of a strong THz signal. In [5], a novel mechanism for inducing sub-cycle electron dynamics and

THz emission, based on the excitation of atomic resonances between the ground state and Ryd-

berg states, was theoretically devised in collaboration with Max Born Institute Berlin, the Institute

of Quantum Optics in Hanover, and Lomonosov Moscow State University.

Theory of dynamical systems

The research in the field of dynamical systems aims to provide the mathematical background for

the applied research on semiconductor lasers and optical fibers and contributes to the fields of

self-organized patterns and dynamics in delay-differential equations and coupled oscillator sys-

tems.

For the control of localized structures, a control scheme that was developed for coupled oscilla-

tor systems was successfully transferred to a classical problem in fluid dynamics. Together with

Yohann Duguet (Paris) and Ashley Willis (Sheffield), a proportional control scheme was applied

for the efficient computation of so-called edge states in several configurations of cylindrical pipe

flow. These unstable dynamical states establish the boundary in phase space between the stable
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laminar flow and the coexisting fully turbulent regime. Using the control scheme, they can be effi-

ciently and dynamically stabilized, and found directly, by a simple run of a slightly modified com-

putational fluid dynamics (CFD) simulation, thus providing an enormous gain in computational

efficiency [6].

Moreover, the dynamical regime of mode-locking, which is a long-standing topic in the research

group’s activities in the field of semiconductor laser dynamics, was found in the context of coupled

phase oscillator systems.

Fig. 4: Phase velocities and
self-organized pulses in the mean
field of a globally coupled system
of phase oscillators; (a), (b) –
stable mode-locking; (c) – phase
turbulence; (d) – linear
mode-locking by superposition of
oscillations with equidistant
frequencies

A further highlight was the Focus Issue: Time delay dynamics within the journal Chaos: An Interdis-

ciplinary Journal of Nonlinear Science, where Matthias Wolfrum was a guest editor together with

Serhiy Yanchuk (TU Berlin), Thomas Erneux (Université Libre de Bruxelles), and Julien Javaloyes

(Universitat de les Illes Balears); see http://aip.scitation.org/doi/full/10.1063/1.5011354.
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4.3 Research Group 3 “Numerical Mathematics and Scientific

Computing”

RG 3 studies the development of numerical methods, their numerical analysis, and it works at im-

plementing software for the numerical solution of partial differential equations. Many of the re-

search topics have been inspired by problems from applications. Below, a selection of topics of

the group is briefly described. Further topics include discretizations of convection-diffusion equa-

tions, which are at the same time accurate, efficient, and free of unphysical oscillations, and con-

servation law preserving finite element methods for equations from fluid mechanics. Research soft-

ware based on the developed methods is used in applications like semi-conductor device simula-

tion (in collaboration with RG 1 Partial Differential Equations and RG 2 Laser Dynamics (https:

//www.wias-berlin.de/software/ddfermi)), the simulation of problems from hemo-

dynamics and cancer growth, of electrolytes and electrochemical systems (in collaboration with

RG 7 Thermodynamic Modeling and Analysis of Phase Transitions); see also the Scientific High-

lights article on page 15, and the development of algorithms for reduced-order modeling.

A novel coupled simulation method for stochastic particle systems

Stochastic particle systems can be modeled by population balance systems (PBS). PBSs are en-

countered in chemical engineering, meteorology, oceanography, or biomedicine. The type of par-

ticles depends on the application area. In chemical engineering, particles are, e.g., crystals, in

meteorology, atmospheric pollutants, or in oceanography, sediment particles that are transported

by marine currents. PBSs describe the development of the particle population itself, as well as

of the surrounding flow field, its temperature, and the concentration of transported dissolved

species. Thus, PBSs comprise multiple interaction phenomena, and they pose several numerical

challenges; see, e.g., [5].

Fig. 1: Snapshot of the mass
of crystalline aspirin in a
flow tube crystallizer, due to
attachment growth of
dissolved aspirin from the
surrounding fluid. The flow
is from left to right, the
upper boundary is a solid
wall, and the lower boundary
is the symmetry axis.

Together with RG 5 Interacting Random Systems, stochastic-deterministic methods for the solution

of PBSs were developed. The temperature, concentration, and flow fields are modeled with partial

differential equations, using advanced finite element methods for their simulation. Highly devel-

oped stochastic methods (kinetic Monte Carlo methods) are utilized for simulating the particle pop-

ulation. The coupled simulation method is based on a suitable splitting strategy for PBSs and on

using two specialized in-house research codes: PARMOON (finite element fluid dynamics, RG 3) and

Brush (stochastic particle methods, RG 5). An interface between these codes was implemented,
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interchanging information like velocity, particle positions, or particle properties. An efficient com-

munication between both codes was achieved.

In the first step, an application from chemical engineering was studied: a flow crystallizer for the

Fig. 2: Particle size
distribution of inlet and
outlet crystal fraction of an
aspirin flow crystallizer,
computed with the new
coupled simulation method

production of aspirin. The considered problem can be modeled with an axisymmetric setup; see

Figure 1. In an experimental paper, well-controlled setups are reported, exploiting surface growth

and particle collision growth. These particle interaction phenomena entered the stochastic simu-

lation. A temperature and mass balance equation and the flow field were dealt with by the contin-

uous part of the simulation. This combination of methods enabled good reproduction of the ex-

perimental results for four different setups, in reasonable computing time, compare Figure 2. The

blue histogram shows the inlet crystal size distribution, i.e., the crystal fraction that was pumped

into the crystallizer. The flatter, pink histogram is the simulation result, which shows distinctly the

effect of particle growth in the tube crystallizer.

The newly developed method is well suited for systems of particles with multiple inner coordinates.

Simulations of applications with such particles are future work. In addition, the extension of the

method to three dimensions and its implementation on parallel computers are planned.

Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and
radial basis functions (RBF) for surface reconstruction

TETGEN is a C++ program and library for generating tetrahedral meshes of 3D domains [4]. It is

a long-term research project of WIAS. Its goals are to investigate the mathematical problems, to

develop theoretically guaranteed algorithms, and to implement robust, efficient, and easy-to-use

software. Recently, a new algorithm on mesh improvement was developed [2].

Given a tetrahedral mesh and objective functionals measuring the mesh quality, which take into

account the shape, size, and orientation of the mesh elements, the aim is to improve the mesh

quality as much as possible. In this new algorithm, the recently developed flipping and smoothing

methods were combined into one mesh improvement scheme and applied in combination with a

smooth boundary reconstruction via radial basis functions; see Figure 3.

Fig. 3: Mesh improvement
operations

Numerical studies show that the combination of these techniques into a mesh improvement frame-

work achieves results that are comparable and even better than the previously reported ones; see

examples in Figure 4.
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Fig. 4: Numerical studies
that show the improvement
of the mesh quality with the
new algorithm proposed
in [2]

PARMOON – A software platform for problems from fluid dynamics

Fig. 5: Solution to the
Stokes–Darcy coupled
problem for a “river bed”
computed by PARMOON

PARMOON is a flexible finite element package for the solution of steady-state and time-dependent

convection-diffusion-reaction equations, incompressible Navier–Stokes equations, and coupled

systems consisting of these types of equations, like population balance systems or systems cou-

pling free flow and flows in porous media. PARMOON abbreviates Parallel Mathematics and object

oriented Numerics and is developed in cooperation with the Computational Mathematics Group of

Prof. Sashikumaar Ganesan at the Department of Computational and Data Sciences (Indian Insti-

tute of Science, Bangalore) and the group of Prof. Gunar Matthies (TU Dresden).

PARMOON is the successor of MOONMD, whose development started in 1996 in Magdeburg and

whose reference paper has more than 100 citations. Starting in 2013, the parallelization for dis-

tributed memory systems and the re-implementation of large parts of the code base led to the new

name PARMOON.

One of the main features of both is the clear separation of geometry and finite elements as one

can find them in textbooks. Well over 100 finite elements are implemented in one, two, and three

spatial dimensions, including conforming, non-conforming, discontinuous, higher-order, vector-

Fig. 6: Pressure isosurfaces
of a flow computed by
PARMOON

valued, and isoparametric ones as well as finite elements with bubbles. A number of time stepping

methods, such as θ -, diagonally implicit Runge–Kutta, and Rosenbrock–Wanner schemes, can

be employed. A wide variety of spatial discretizations is available, especially many stabilizations

for convection-dominated convection-diffusion-reaction equations and for finite element pairs for

the Navier–Stokes equations that are not inf–sup stable. Furthermore, turbulence models can be

used.
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PARMOON has interfaces to external libraries to solve the resulting linear systems of equations.

Fig. 7: Parallel efficiency for
the heat equation with
135,005,697 degrees of
freedom

These include direct solvers (UMFPACK, PARDISO, MUMPS) as well as many iterative ones (through

the portable, extensible toolkit for scientific computation PETSc). Additionally, PARMOON has built

in a fully parallelized geometric multigrid solver/preconditioner. It outperformed external solvers

in the context of incompressible Navier–Stokes equations by up to 24 processes; see [6]. And a

very good speedup of the multigrid preconditioner for the heat equation was obtained up to 960

processes; see Figure 7 and [3].

The code is continually extended and revised to address both new software and architectural de-

velopments (for examples concerning the build system, compilers, and debugging tools), as well

as new discretizations and stabilizations. There are, e.g., several solvers/preconditioners for in-
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compressible flow simulations available in PARMOON that are quite different in nature. A study

assessing a direct solver (UMFPACK) with the FGMRES method preconditioned with a coupled multi-

grid scheme or the least-squares commutator (LSC) method was conducted in [1]. None of these

solvers was superior in all considered cases. In fact, the efficiency rather depends on the pair of

inf-sup stable finite element spaces, the fineness of the spatial mesh, and the length of the time

step. While direct solvers are feasible in two space dimensions for small to medium-size problems,

in all other situations, iterative methods are the only option. It furthermore turned out that for

steady-state problems a coupled multigrid preconditioner (using Vanka-type smoothers) was gen-

erally the most efficient approach; see Figure 8. The LSC preconditioner, on the other hand, was

fastest whenever time-dependent problems were discretized with small time steps.
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4.4 Research Group 4 “Nonlinear Optimization and Inverse

Problems”

The research group investigates optimization and inverse problems occurring in current engineer-

ing and economic applications. A specific focus of research in optimization and optimal control

is the investigation of special structures resulting from the presence of uncertain and nonsmooth

data. Together with RG 3 Numerical Mathematics and Scientific Computing and RG 6 Stochastic

Algorithms and Nonparametric Statistics, the group investigates direct and inverse problems for

partial differential equations (PDEs) with uncertain coefficients.

Fig. 1: MIMESIS mid-term meeting,
September 2017

In 2017, the research group successfully completed its participation in the first phase of the DFG

Transregio (TRR) 154 Mathematical Modelling, Simulation and Optimization Using the Example of

Gas Networks and now prepares itself for participating in a possible second phase.

Moreover, besides of the evaluation of WIAS by the Senate of the Leibniz Association, this year’s

work was marked by two further important events. Together with RG 6 and colleagues from TU

Berlin, in September we organized the Workshop “Mathematics of Deep Learning”, where more

than 60 participants from different disciplines discussed approaches towards a mathematically

rigorous understanding of deep learning architectures and their applications.

Later in September, the mid-term meeting of the Marie Skłodowska-Curie EID Project “MIMESIS”

took place at WIAS. The academic and industrial supervisors from WIAS, University of Oulu, the

industrial partners EFD Induction, SSAB and Outokumpu, and two representatives of the Research

Executive Agency (REA) of the European Commission met in Berlin to discuss preliminary results

of the project. The eight early stage researchers gave interesting presentations about their Ph.D.

topics related to mathematics and steel production. With a very positive feedback from the REA rep-

resentatives, the MIMESIS team continues highly motivated into the second period of its project.

In the following, selected scientific achievements of the research group in 2017 are detailed.

Stochastic and nonsmooth optimization

The group continued its intensive research on stochastic and nonsmooth optimization. The main

driving force for the investigation of this topic is the work on the subproject “Nonlinear probabilis-
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tic constraints in gas transportation problems”, within the DFG Transregio (TRR) 154 Mathemati-

cal Modeling, Simulation and Optimization Using the Example of Gas Networks. The novel class of

stochastic optimization problems subject to probust (probabilistic/robust) constraints, introduced

earlier in this project, was analyzed in more detail in the context of gas networks [1]. As a partic-

ular application, the network owner’s capacity maximization problem under random exit loads

could be solved for arborescent networks (see Figure 2). A numerical solution algorithm for such

problems was developed on the basis of gradient formulae for Gaussian probability functions re-

lated to smooth systems of random inequality constraints obtained in [2]. Another part of research

in stochastic optimization was supported by the Gaspard Monge Program for Optimization and

Operations Research funded by the Jacques Hadamard Mathematical Foundation and Electricité

de France (EDF). Here, the investigation of structural properties of probabilistic constraints for dy-

namic models and different types of multivariate distributions was in the focus of considerations.

The potential application behind that would be hydro power management. An implementation

based on the sequential quadratic programming code SNOPT and the specialized code MVNDST

for evaluating Gaussian probabilities of rectangles was realized and tested on several examples

from EDF with a focus on robustness and precise estimates of confidence intervals for the optimal

value. The research in nonsmooth optimization and variational analysis is partially of independent

interest but also strongly related to stochastic optimization. First, it plays a significant role in ana-

lyzing (Lipschitz) continuity of probability functions and deriving subdifferential formulae. Second,

it is an essential tool for deriving necessary optimality conditions (M-stationarity) for mathematical

programs with equilibrium constraints (MPECs) already in a deterministic setting. This issue will

play a central role in a possible second phase of the above-mentioned TRR project, where the gen-

eral emphasis will be laid on stochastic and deterministic models for gas markets. Such models

typically lead to MPECs. In a preparatory step, the role of the so-called calmness of perturbed gen-

eralized equations as a constraint qualification for stationarity conditions in MPECs was analyzed

in detail.
Teilbereich B: 5

Abbildung 3.1. Lösung des Kapazitätsmaximierungsproblems für ein Beispielnetz mit einem Entry (schwarz). Links:
Optimale Lösung für die Erweiterung von Buchungskapazitäten an den Exits bei vorgegebener Wahrscheinlichkeit
p = 0.8. Mitte: Beispiel für ein zulässiges Lastszenario (Reserven: grün). Rechts: Beispiel für ein unzulässiges
Lastszenario (Defizite: rot)

Mathematische Perspektiven aus der Projektarbeit. Neben den konkret aus der Struk-
tur von Gastransportproblemen heraus motivierten Untersuchungen, war es Ziel des
Projekts, sich hieraus neu entwickelnde mathematische Fragestellungen zu beantwor-
ten, die auch auf andere potentielle Anwendungsfelder ausstrahlen können. Zunächst
betrifft dies dynamische Modelle, bei denen in zeitdiskreten Entscheidungsprozessen
dem Informationsgewinn durch Beobachtungen des Zufalls in der bereits vergangenen
Zeit Rechnung getragen wird. Obwohl dieses Modell nicht durch die Ausgangsfrage-
stellung im Gastransportproblem nahegelegt wurde, ist es ganz offensichtlich, daß eine
solche Betrachtungsweise in anspruchsvolleren Modellen nicht nur der Gastransport-
optimierung sondern auch allgemeinerer energiewirtschaftlicher Fragestellungen (z. B.
Wasserkraftmanagement etc.) von großem Belang sein wird. In [7] wurden daher ver-
schiedene Zugänge zur Lösung von Optimierungsproblemen unter dynamischen WRn
auf der Grundlage von linearen Entscheidungsregeln analysiert. Die erzielten Ergebnisse
werden parallel innerhalb eines Dissertationsprojektes durch eine zeitweilige Stipendiatin
(T. Grandon) des TRR-Graduiertenkollegs hinsichtlich einer algorithmischen Verwertung
weiterentwickelt. Eine zweite natürliche Erweiterung der ursprünglich fast ausschließlich
im Kontext des Operations Research betrachteten WRn ergibt sich bei unendlichdimensio-
nalen Entscheidungen. Diese können im Kontext des Gastransports durch zeitabhängige
Kontrollen gegeben sein. Interessant sind aber darüberhinaus Anwendungen in der PDE-
restringierten Optimierung mit probabilistischen Zustandsrestriktionen, z. B. Stresses
bei der Shape-Optimierung mechanischer Strukturen unter zufälligen äußeren Lasten
(etwa Wind). In [4] wurden Bedingungen an die Daten eines Problems unter WRn mit
unendlichdimensionalen Entscheidungen formuliert, die schwache (Halb-) Stetigkeit,
Konvexität und Stabilität der WR garantieren. Diese Bedingungen wurden für eine spezi-
elle Klasse PDE-restringierter Optimierungsprobleme unter Unsicherheiten verifiziert.
Auch die (Sub-) Differenzierbarkeitsresultate in [10] wurden im Kontext unendlichdimen-
sionaler Entscheidungen erhalten. Bereits in Vorbereitung einer zweiten Projektphase
widmete sich [1] der Analyse der sogenannten calmness einer mengenwertigen Abbildung,
die die Herleitung notwendiger Optimierungsbedingungen in MPECs gestattet.

Arbeit im Team Unsicherheit. Das vorliegende Projekt erfuhr eine signifikante Berei-
cherung durch die Kooperation mit anderen Projekten, und zwar in erster Linie jenen, die
im Team Unsicherheit organisiert waren (01, ??, ??, ??). Dieses Team führte zahlreiche Ar-
beitstreffen durch, bei denen die vorhandenen Kompetenzen sich wechselseitig ergänzend
in Fragestellungen aus der Schnittmenge der Einzelprojekte mündeten. Am intensivsten
gestaltete sich die Kooperation mit ??, aus der die oben bereits diskutierte gemeinsame
Publikation [6] hervorging. Deutlichstes Ergebnis der gesamten Team-Zusammenarbeit
war die ebenfalls oben bereits erwähnte Einführung der Klasse probuster Optimierungs-

Fig. 2: Solution of the capacity
maximization problem for a gas
network under random exit loads (left).
Feasible (middle) and unfeasible
(right) exit load scenario

Inverse problems for stochastic data and reconstruction of stochastic surfaces

Application-related problems based on PDE models usually include a large number of parameters,

e.g., determining stochastic coefficients and data, and/or inverse problem settings. The quality

of their solution is restricted by limited storage capacity and computing time. To enable an effi-

cient and accurate treatment, sparse representations of the functions and operators have to be

exploited, especially by using adaptive discretizations and model order reduction approaches.

Moreover, new algorithms have to be designed. In our research group, adaptive low-rank tensor

methods were developed and applied to random PDEs, to parametric forward models, Bayesian

inversion, and to topology optimization with uncertain data.

A new adaptive stochastic Galerkin finite element method (FEM) based on low-rank tensor methods

was derived in [3]. As an extension, a novel approach to treat generic coefficient approximations
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in the tensor-train format was investigated. This theoretically derived and practically implemented

method generalizes the framework of affine-uniform and log-normal coefficients in random PDEs

and allows for a complete adaptive treatment of all discretization parameters in the solution pro-

cess. It is the first numerical method for log-normal coefficients with reliable a posteriori error

estimators.

The (statistical) determination of model parameters based on a finite set of measurements is a cen-

tral task in UQ (uncertainty quantification) and of great practical relevance. Based on the adaptive

stochastic Galerkin FEM, an explicit Bayesian inversion was developed, which extends the a pos-

teriori adaptivity to the inversion process, leading to a functional representation of the posterior

density [4].

In a collaborative project with industrial partners and the Leibniz-Institut für innovative Mikroelek-

tronik (IHP Frankfurt/Oder) supported by the Central Innovation Programme (ZIM) of the Federal

Ministry of Economics and Technology, the scatterometric measurement of surface geometries

during plasma etching was investigated. For the control of such processes, a fast measurement

technique is mandatory. Illuminating the surface of the workpieces by a light ray from above, mea-

surement devices provide new spectral curves in time steps of a period between a half and two

seconds. In the same time period, an inverse algorithm has to recover the geometry, e.g., the rel-

evant parameters of a periodic structure, from the measured reflectance spectrum. This problem

is severely ill posed, i.e., the size of the parameters to be reconstructed is beyond the diffraction

limit. However, a suitable parametrization of the geometry leads to a regularized problem for which

a gradient-based local minimization algorithm was developed, where the optimization functional

is the deviation of the measured spectrum from the sparse-grid interpolation of the spectra simu-

lated for different parameter values; see Figure 3.

To simulate acoustic waves scattered by a bounded elastic body, an algorithm coupling FEM and

boundary elements was analyzed; see [6]. Different discretization schemes for the Dirichlet-to-

Neumann map were derived and implemented. All this can be employed for the inverse algorithm

developed at WIAS.

Fig. 3: Reconstruction of
periodic line-space structure
for different noise levels nl :
reconstructed height p3 of
the silicon layer (left),
reconstructed height p4 of
the photo-resist layer (right)

Optimal control of multifield and multiscale problems

Last year’s work in this area was dominated by the European Industrial Doctorates (EID) project

“MIMESIS”, which is coordinated by our group. Three of the eight MIMESIS PhD students are super-
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vised by the research group, another one by RG 3 Numerical Mathematics and Scientific Comput-

ing. The research topics cover modeling, simulation, and optimization of high-frequency induction

welding, single- and multi-frequency induction hardening of helical and bevel gears, and inductive

pre- and post-heating for the thermal cutting of steel plates. In all projects, the models consist

of coupled, nonlinear systems of partial differential equations. Depending on the application, the

equations involve the heat equation, Maxwell’s equations to compute the magnetic field as source

of the inductive heating, the equations of elasticity to account for structural deformations as con-

sequence of thermal expansion and phase transition phenomena in steel, and a system of ordinary

differential equations to describe the evolution of different phases in steel.

Fig. 4: Temperature profile in
tube (left), weld setup for
electromagnetic heating (right)

For a numerically efficient treatment of these electro-thermal problems in a time-domain setting,

different time scales for Maxwell’s equations and the energy balance have to be considered. To

justify the chosen numerical approach, a model problem with two parabolic equations on different

time scales was investigated. The modeling of phase transitions was considered in cooperation

with the materials science Ph.D. topics in MIMESIS. And for the evolution of grain sizes, a new

Fokker–Planck-type approach was developed [5].
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4.5 Research Group 5 “Interacting Random Systems”

In 2017, RG 5 continued its research on various topics in Probability and Statistical Mechanics,

like (static and dynamic) interacting particle systems, random walk models in random media, con-

centration properties of spectra of random operators, on Gibbs measures and percolation. While

all these mathematical topics have an origin in concrete applied questions, the most immediate

connection with applications is present in the work of Leibniz Group LG 4 Probabilistic Methods for

Mobile Ad-hoc Networks, which is embedded in RG 5. Within this work, a promising and flourishing

collaboration with one of Europe’s largest telecommunication companies was established. In this

partnership, theoretical questions are investigated by the group, and their most interpretable and

most applied results are delivered to the company.

The main subject of LG 4 is the probabilistic treatment of large spatial ad-hoc communication net-

works, a subject that has many facets and is under investigation in RG 5 in various additional

programmes, like a Ph.D. project within the Berlin Mathematical School (BMS; project started in

Summer 2016), a new Ph.D. project within the MATHEON (started in Summer 2017), and several

master’s theses. The combination of various tools from probability and analysis is characteristic

for the research of RG 5 also in this field; the usage of models from Stochastic Geometry (interact-

ing point processes, e.g.) is vital here. This part of the work of RG 5 will be detailed in the Scientific

Highlights article on page 27.

Another strong concentration of the group is on the combination of tools from the theories of static

and dynamic interacting particle systems, i.e., tools from large deviation theory for point processes

and for clouds of many paths, parameter-dependent rate functions, many-body systems, Gibbs

measures, etc. At several places, it turned out that some of these models can be employed both in

telecommunication models and in the description of chemical processes. The investigation of the

impact and reach of these cross-connections is in full swing within RG 5.

Two important schools were (co-)organized by RG 5 in 2017: Within the DFG Collaborative Research

Center (CRC) 1114 Scaling Cascades in Complex Systems, jointly with RG 1 Partial Differential Equa-

tions, the group organized a Spring School on “Methods for Particle Systems with Multiple Scales”,

presenting three minicourses by worldwide experts, additional talks by members of the CRC and

supplementary exercises. One of the two annual BMS Summer Schools was organized by the head

of RG 5, Wolfgang König, at the Technische Universität Berlin on “Probabilistic and Statistical Meth-

ods for Networks”, jointly with the Centre for Doctoral Training SAMBa of Bath University. There

were two WIAS researchers among the eight minicourse speakers, one of which was from RG 5. The

program comprised exercises and talks by the organizers and by the participants.

A particular highlight in the efforts of RG 5 to increase the popularity of mathematics in particular

and of science in general was the involvement of the youngest member of RG 5, Franziska Flegel, in

the organization of the conference “I, Scientist” at Freie Universität Berlin in Spring. The focus of

this big conference was on gender, career planning, and networking in all the sciences; it featured

a number of highly visible researchers and was a big success. Further activities of members of RG 5

consisted in public talks on occasions like the annual Day of Mathematics for Berlin pupils or the

Girls’Day or talks in Urania Berlin.
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In teaching, the head of RG 5, supported by some group members and some Ph.D. students, su-

pervised again a very large quantity of bachelor’s and master’s theses at Technische Universität

Berlin on various subjects in the scientific spectrum of his research group.

Please find below a closer description of some of the group’s achievements in 2017.

Random walk on random walks

Random walk in dynamic random environment (RWDRE) is a model for the movement of a tracer

particle in a disordered medium that evolves in a time scale comparable to the displacement of

the tracer; an example is a pollutant moving in a turbulent fluid. To define the model, fix d ∈ N
and let ω = (ωx,t )x∈Zd ,t∈N0

be a random collection of time-dependent probability measures on

Zd , called dynamic random enviroment. Given a realization of ω , the RWDRE is defined as the

Markov chain X on Zd that, when at site x at time t , jumps at time t + 1 to the site x + y ∈ Zd

with probability ωx,t (y) .

An important motivation in d = 1 comes in comparison with the static version of the model, where

ωx,t = ωx,0 for all x, t . In this case, it is known since the seminal works of Solomon and Kesten,

Kozlov and Spitzer in the 1970’s that the model may exhibit anomalous diffusion, i.e., scaling

limits different from the usual central limit theorem (CLT). This is related to the occurrence of traps

in the lattice, which are regions where, due to atypical configurations of ω , the random walk tends

to spend abnormally large amounts of time. In the dynamic setting, traps may disappear, hence

the question is raised whether or not anomalous diffusion persists. So far, this question has only

partially been answered in the literature, mostly by identifying regimes where the usual CLT holds.

In the works [1], [2], ω is a functional of a Poisson system of independent simple symmetric ran-

dom walks in Zd , i.e., of a family of moving particles. This case is both interesting and challenging

because of its conservation properties and poor space-time mixing properties. The group’s analy-

sis is perturbative around parameters for which the behavior is known; in particular, the random

walk is always ballistic, i.e., has non-zero limiting velocity. The results include ballisticity condi-

tions, laws of large numbers, CLTs and large deviation bounds under the annealed measure, i.e.,

the joint law of ω and X . The regimes considered are as follows: In [1], previous work is extended

in the regime of high particle density to dimensions d ≥ 2 and more general transition kernels.

In [2], the group restricts to d = 1 and treats the regimes of low particle density and large local

drift on particles; a surprising discontinuity in the velocity is observed depending on whether the

environment particles are “permeable” to the random walk, roughly meaning that the latter may

freely cross the former, or not.

Interaction clusters in rarefied gases

Connections between nonlinear kinetic equations and stochastic interacting particle systems have

been studied in the group for many years. Particular application areas were the Boltzmann equa-

tion for rarefied gases and the Smoluchowski equation for coagulating systems. Recent results on

interaction clusters are related to both of these areas.
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84 4 Research Groups’ Essentials

Interaction clusters provide the decomposition of a particle system with localized interactions into

groups of particles that influenced each other up to a given time. The evolution of interaction clus-

ters in a frictionless elastic billiard model was studied in the literature. Based on numerical exper-

iments, a phase transition in the cluster formation process was observed. Namely, at some critical

time a sharp qualitative change occurs: There appears a distinct largest cluster, which creates a

gap in the mass distribution between the largest cluster and the rest of the clusters.

In [5] the group studies a general stochastic particle model with binary interactions. The model

covers the spatially homogeneous stochastic Boltzmann model, where the binary interactions are

collisions of particles leading to a transformation of their velocities. The interaction clusters in

the general model show an effect similar to that observed in the billiard model, namely, a distinct

largest cluster forms in a finite time (see Figure 1).
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Fig. 1: Sizes of all clusters of
the system with 106

particles

A kinetic equation for the asymptotic cluster distribution is established when the number of par-

ticles goes to infinity and the interaction rates are appropriately scaled. In terms of the kinetic

equation, the phase transition corresponds to the solution becoming non-conservative. Specific

results concern the following three issues:

� Cluster distribution: A recursive representation for the cluster distribution is found under some

restrictions on the interaction kernel. Several explicit formulas for various cluster properties

are obtained for particular choices of the interaction kernel, which include the Boltzmann

model with a collision kernel of quadratic type.

� Gelation time: Upper and lower bounds for the formation time tgel of the huge cluster are ob-

tained. Using some of these estimates as well as several examples and numerical experiments,

we obtain the conjecture tgel ≤ tmf , where tmf is the asymptotic mean free time (time between

interactions) for one particle.

� Numerics: Numerical experiments are performed for the Boltzmann model. Both the explicit

formulas for cluster properties and the conjecture concerning the gelation time are illustrated.

Gibbs measures under time evolution and their representations

Fig. 2: Absolutely summable
hyperedge potentials for
Gibbsian point processes via
regrouping

Since the work of Boltzmann and Gibbs, in the second half of the 19th century, it has been un-

derstood that microscopic phenomena in physics, which lead to macroscopic changes of the sys-

tem under consideration, can effectively be modeled via a probabilistic approach. Here, the micro-

scopic configurations of particles are drawn from Gibbs distributions, the thermodynamic equilib-

rium states of the system. A Gibbs distribution is a measure that balances two competing powers:

the desire to minimize the mutual energy between particles, and entropy that drives the system

towards some a priori measure.

To move beyond the equilibrium setting, transformations of Gibbs measures are a natural way to

model, for example, a system of particles being heated up. It was observed that, in many situations,

the transformed measures lose certain locality properties and thereby can not be represented as a

Gibbs measure anymore. It is exactly this relation that is analyzed in [3] in the setting of Gibbsian

point processes. Here, the transformed measure is locally given by a random field that is absolutely
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continuous with respect to the Poisson point process. It is shown that a compatible family of den-

sities ρ = (ρA)AbRd can be written as a family of Boltzmann distributions for some interaction

potential V , i.e.,

ρA(ω) ∝ exp
(
−

∑
ηbω: η∩A 6=∅

V (η, ω)
)
,

if the densities are sufficiently local. However, V often shows poor summability properties. There-

fore, also a representation of ρ is given for absolutely summable potential V ′ using a regrouping

as depicted in Figure 2.

In [4], the evolution of mean-field models under stochastic dynamics is considered. The two main

I0 I ′0

Fig. 3: Five initial rate
functions and their
derivatives

examples are the Curie–Weiss model under Glauber dynamics and Brownian dynamics in a poten-

tial. The Gibsianness of the mean-field model at a given time t is characterized in terms of the

regularity of the rate function It of the large deviation principle in the thermodynamic limit at that

time. Indeed, it is proved that the model at time t has the Gibbs property if and only if It is dif-

ferentiable. Since the (generalized) gradient of It evolves according to a Hamiltonian flow, one

can use this flow to analyze differentiability of It . This tool enables to decide the Gibbs property

at any time for various models. For the Curie–Weiss model under Glauber dynamics, e.g., one en-

counters, for various choices of the parameters, interesting scenarios for the initial rate function I0

(see Figure 3) and for the differentiability of the corresponding It ’s. Indeed, for I0 represented

as the green and the red curves, It is differentiable at any time t , while for all the blue curves,

there is a loss of differentiability after some time. Furthermore, the time evolution of the

shows a later recovery of differentiability, but the one of and do not. The conclu-

sion about the transition of the underlying mean-field model from Gibbs to non-Gibbs and back is

rather appealing.
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4.6 Research Group 6 “Stochastic Algorithms and

Nonparametric Statistics”

The Research Group 6 focuses on the research projects Statistical data analysis and Stochastic

modeling, optimization, and algorithms. Applications are mainly in economics, financial engineer-

ing, medical imaging, life sciences, and mathematical physics. Special interest is in the modeling

of complex systems using methods from nonparametric statistics, statistical learning, risk assess-

ment, and valuation in financial markets using efficient stochastic algorithms and various tools

from classical, stochastic, and rough path analysis.

RG 6 has a leading position in the above-mentioned fields with important mathematical contribu-

tions and the development of statistical software.

Members of RG 6 participated in the DFG Collaborative Research Center (CRC) 649 Economic Risk,

DFG Research Unit FOR 1735 Structural Inference in Statistics: Adaptation and Efficiency, DFG In-

ternational Research Training Group IRTG 1792 High Dimensional Non Stationary Time Series, DFG

Research Unit FOR 2402 Rough Paths, Stochastic Partial Differential Equations and Related Topics,

and in the Research Center MATHEON.

Group members were also involved in several industrial contracts and cooperations, such as a

project with GE Technology (jointly with RG 3 Numerical Mathematics and Scientific Computing) on

“Process simulation for industrial gas turbines”.

Scientific highlights achieved by the research group in 2017 are provided below.

Statistical data analysis

The focus within the project area Statistical data analysis is on methods that automatically adapt to

unknown structures using some weak qualitative assumptions. The research includes, e. g., meth-

ods for dimension reduction, change-point detection, regularization and estimation in inverse

problems, model selection, feature identification, inference for random networks, and complex

statistical objects using Wasserstein barycenters. Research within this subarea covered both theo-

retical and applied statistical problems.

Highlights 2017:

� Approval of CRC 1294 Data Assimilation at Universität Potsdam, start of project A06.

� Approval of project SE22 of Research Center MATHEON.

� Approval of project OT7 of Research Center MATHEON.

� Prolongation of IRTG 1792 High Dimensional Non-stationary Time Series at Humboldt-Universi-

tät zu Berlin until September 2022.

� Organization of the Workshop “Mathematics of Deep Learning” at WIAS.

� Development of the statistical package AWC for adaptive nonparametric clustering.

In 2017, the members of the group made some significant contributions to statistical literature.
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In [1], a new bootstrap-based approach to the estimation of the spectral projector of a large ran-

dom matrix is presented. The theoretical study is based on novel results in high-dimensional prob-

ability. The approach is very promising for the problem of dimensionality reduction.

Paper [2] offered a complete solution of the so-called large-ball probability problem that naturally

arises in the study of the bootstrap validity and prior impact in Bayesian inference. The obtained

results will be used for data assimilation problems within project A06 of CRC 1294.

Paper [3] provides a rigorous study of the problem of adaptive clustering using the adaptive

weights procedure AWC. The result was presented as an invited plenary talk at the 2017 Ober-

wolfach Workshop “Statistical Recovery of Discrete, Geometric and Invariant Structures”, March

21–24, 2017. The statistical package AWC was developed and added to the software list of WIAS.

Wasserstein spaces of probability measures are widely used for the modeling and analysis of ge-

ometric objects, such as images and shapes. A construction procedure for non-asymptotic confi-

dence sets for empirical barycenters in 2-Wasserstein space was proposed in [4]. This procedure

is used to construct a non-parametric two-sample test for the detection of structural breaks in data

with complex geometry.

Statistical numerical procedures based on the geometry of Wasserstein spaces include the optimal

transport optimization problem as a building block. Paper [5] provides a numerically stable alter-

native to ubiquitous Sinkhorn’s algorithm for solving optimal transport problems. The proposed

algorithm outperforms Sinkhorn’s algorithm in the regime of the strong requirements for the accu-

racy of the obtained solution.

The expertise of the research group with respect to the modeling and analysis of imaging data

was further developed in several new directions. In cooperation with the Max Planck Institute

for Human Cognitive and Brain Sciences in Leipzig (MPI CBS) and the University Medical Center

Hamburg-Eppendorf (UKE), the group worked on new methods for emerging quantitative magnetic

resonance imaging modalities. This collaboration includes adaptive algorithms for noise reduction

in high-dimensional and multi-modal imaging data and the removal of the estimation bias due to

the noise floor in the low signal-to-noise ratio data. RG 6 further established new exact analytic

formulas for parameter estimation. The procedures were implemented in software packages. This

also contributes to a new comprehensive toolbox that combines major developments from a large

European consortium under the lead of MPI CBS.

Fig. 1: Bias correction in
quantitative relaxometry
parameter maps R?2 , R1 ,
and proton density P D
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Fig. 2: An estimator (right) of
the unknown template object
(left) by an observed sample
(middle)

Together with RG 1 Partial Differential Equations, work started on an ECMath project (OT7) on a

novel reconstruction method for quantitative properties of quantum dots from images from trans-

mission electron microscopy (TEM). In the project, methods for structuring the image space are

applied (deep learning) and are being developed (shape space analysis).

Together with RG 1, see page 68, the group also contributed to the development of representation

methods for mathematical models as research data in mathematics. While the project started with

PDE-based models in semi-conductor simulation, RG 6 also worked on the inclusion of statistical

and stochastic models into the general concept of model representation.

Stochastic modeling, optimization, and algorithms

This project area focuses on the solution of challenging mathematical problems in the field of

optimization, stochastic optimal control, and stochastic and rough differential equations. These

problems are particularly motivated by applications in the finance and energy industries. One cen-

tral theme is the rigorous mathematical analysis of innovative methods and algorithms based on

fundamental stochastic principles. These methods provide effective solutions to optimal control

and decision problems for real-world high-dimensional problems appearing in the energy markets,

for instance. Another focus of the project area is on financial (interest rate and equity) model-

ing, volatility modeling, effective calibration, and the modeling of financial derivatives, such as

complex-structured interest rate, energy, and volatility derivatives.

Highlights 2017:

� Start of Focus Platform Quantitative Analysis of Rough and Stochastic Systems.

� Outstanding publication jointly with RG 4 Nonlinear Optimization and Inverse Problems and

RG 3 Numerical Mathematics and Scientific Computing in the context of interaction between

analysis and stochastics within WIAS:

F. ANKER, CH. BAYER, M. EIGEL, M. Ladkau, J. NEUMANN, J. SCHOENMAKERS, SDE based regression

for linear random PDEs, SIAM J. Sci. Comput., 39:3 (2017), pp. A1168–A1200.

Modern mathematical finance takes into account the illiquidity of markets in a fundamental way,

for instance, by fully modeling the limit order book of an asset. Mathematically, limit order books

can be most directly described as high-dimensional (but discrete) queuing systems, where orders

arrive, are executed, but can also be cancelled according to specific rules, thereby producing mar-

ket price changes. On the other hand, a different class of models of the limit order book has been

proposed that describe the limit order book as an infinite-dimensional random surface, i.e., a
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stochastic partial differential equation. In [6], these two modeling paradigms were linked: A queu-

ing model was proposed, which exhibits an event-by-event description of the evolution of a limit

order book. Then, a corresponding system of stochastic partial differential equations was derived

as scaling limit.

In the area of regression-based methods for optimal stopping and control, a new approach that

involves the incorporation of “deep learning” ideas was proposed. The main goal is to amend or

replace the usually fixed regression basis in a dynamic program by basis functions “learned” from

the estimation results of the preceding steps. More specifically, the new basis functions are di-

rectly related or related via an application of the underlying propagation operator to the solution

estimate of the preceding step. As such this approach has a flavor of dictionary learning, and has

the potential advantage of reducing the complexity of several regression-based methods for dy-

namic programs connected with stopping or control problems.

The research on nonlinear Markov or McKean–Vlasov processes, which are stochastic processes

related to nonlinear Fokker–Planck equations whose transition functions may depend on the cur-

rent distribution of the process, was continued. These processes naturally arise in a wide range of

applications, including lithium battery modeling (in RG 7 Thermodynamic Modeling and Analysis

of Phase Transitions), population dynamics, neuroscience, and financial mathematics. In a collabo-

ration with Denis Belomestny (Universität Duisburg-Essen), the focus was on the analysis of novel

regression-based estimators for solving McKean–Vlasov-related boundary value problems globally

in space. These estimators are based on the realization of an interacting particle system connected

with the McKean–Vlasov equation. The very challenge in this study is the fact that the particles are

interacting, and hence not independent unlike the case of classical Monte Carlo regression. As

a consequence, the regression analysis for independent samples developed in the last decade,

based on the theory of empirical processes, needs to be completely reconsidered. The newly de-

veloped regression estimators may be naturally effectuated in the context of numerical methods

for subsequent problems connected with nonlinear Markov or McKean–Vlasov processes, such as

optimal stopping and variance reduction.

Focus Platform Quantitative Analysis of Rough and Stochastic Systems

The Focus Platform Quantitative Analysis of Rough and Stochastic systems was established in 2017.

Its main research efforts are in understanding and computing in the context of systems driven

by noise that is rougher than Brownian motion. In particular, numerical algorithms for rough and

stochastic partial differential equations are developed. The focus platform also works on the theo-

retical and numerical analysis of rough models in finance, i.e., models based on fractional Brown-

ian motion with very low Hurst index H .

Work has continued on simulation-based numerical methods for random and rough partial differ-

ential equations. In particular, in the context of the research unit FOR 2402, the group develops

a new regression algorithm for parabolic rough partial differential equations based on Feynman–

Kac-type stochastic representations.

When solving stochastic partial differential equations numerically, usually a high-order spatial dis-

cretization is needed. Model order reduction (MOR) techniques are often used to reduce the order

of spatially discretized systems and hence reduce computational complexity. In [8], a new MOR
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approach for linear stochastic systems with Lévy noise was developed. It is based on precise es-

timates for the controllability and observability energy of the system, which allow to identify the

unimportant states within the system. After removing the unimportant states, a low-order reduced

system is obtained that well approximates the original stochastic differential equation. The most

important results are an accurate a priori error bound for the approximation and the stability preser-

vation in the reduced system. In WIAS Preprint no. 2425, a similar idea was successfully applied

to spatially discretized deterministic bilinear equations, an important subclass of nonlinear equa-

tions.

The research on the rough volatility model continued successfully in 2017. In particular, asymp-

totic formulas for option prices and implied volatilities are provided in WIAS Preprint no. 2406,

based on moderate deviations. These results are especially important in the context of rough

volatility models, since the available numerical approximation schemes are typically much slower

than in the diffusion case. With the aim of reproducing the extreme skews and asymmetries, ob-

served on empirical implied volatility surfaces and under rough volatility, threshold models for

local volatility were investigated in WIAS Preprints no. 2467 and no. 2468. It was shown that these

models are able to reproduce extreme skews and asymmetries similarly to rough volatility models.
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4.7 Research Group 7 “Thermodynamic Modeling and

Analysis of Phase Transitions”

Research Group 7 conducts research on multiscale modeling, analysis, and numerical simulation

of complex materials. The main expertise of the group is in the thermodynamically consistent mod-

eling of phase transitions, the derivation of systematic asymptotic methods, in particular, singu-

larly perturbed problems, and the analysis of hysteresis properties. The application areas of RG 7

focus on electrochemical processes, fundamental processes of micro- and nano-structuring of in-

terfaces, the dynamics of complex liquids, and electro-magneto-mechanical components.

For these application areas the research group developed material models of electrochemistry,

such as for lithium-ion batteries and nanopores, phase field models for thin-film solar cells, mod-

els for magnetostrictive materials, models of damage, as well as models for liquid polymers and ac-

tive liquid crystals, and investigates the mathematical theory and numerical algorithms for the cor-

responding initial boundary value problems of systems of coupled partial differential equations.

Atomistically-informed phase field models for liquid-phase crystallization (LPC)

Fig. 1: Simulation of a 3D Si
grain in an undercooled
melt. Intialized as a sphere,
it developed the typical
{100} and {111} facets.

In order to describe and understand the LPC process, it is essential to investigate the microscale

kinetics in a systematic and atomistically consistent way. In the Helmholtz Virtual Institute Mi-

crostructure Control for Thin Film Solar Cells, RG 7 collaborates as a project partner (headed by

Barbara Wagner) with TU Darmstadt to develop an atomistically consistent phase field model to

quantitavely capture the solid-liquid interface energy in silicon; see [1], a paper that was selected

for inclusion in the “Highlights of 2017” collection of the journal Modelling and Simulation in Ma-

terials Science and Engineering.

Numerical simulations, based on pseudo-spectral methods, show that the three-dimensional ex-

tension of the new model reproduces the critical nucleation radius, and correctly captures the

facets of a silicon grain (see Figure 1) as compared to experimental results and the solid-liquid

interface velocities calculated with molecular dynamics. In addition, using asymptotic analysis, a

Fig. 2: The relative error
between simulation and
asymptotics decreases with
decreasing undercooling

phase field model was developed such that the initially microscopic model parameters depend on

the interface thickness. In the numerical algorithm, the value of the variable interface thickness

dictates the number of necessary gridpoints and, hence, the speed of the simulation. Combining

this calculation with the asymptotic analysis resulted in a highly efficient implementation that will

allow to simulate grains with higher radii for comparison with experiments. A convergence analysis

demonstrates the extent of the increase of the interface thickness, such that the model preserves

the kinetic properties of Si. Furthermore, the convergence analysis depicts that the relative error

for the comparison between the simulated and the asymptotic velocities decreases rapidly for de-

creasing undercoolings, which can be seen in Figure 2.
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Phase field models for rate-dependent damage and fracture

Starting from models developed in the Young Scientists’ Group of WIAS, a continuum model was

proposed that incorporates rate-dependent damage and fracture, a material order-parameter field,

and temperature within a phase field approach. The model covers partial damage as well as the

formation of macro-cracks. For the material order parameter, a Cahn–Larché-type dynamics was

assumed, which makes the model, in particular, applicable to binary alloys. With the help of an

adaptive finite element code, numerical experiments of different complexity and including aniso-

tropic linear elasticity were conducted to investigate the effect on the crack pattern.

Fig. 3: Effect of Dirichlet
conditions on the
displacement

The particular form of the damage contribution to the free energy and its dissipation functional

permits the following interpretation: Micro-cracks, which are not resolved by the model, appear as

partial damage. They precede the nucleation and formation of macro-cracks, which are resolved

in the model. Although the damage model is rate dependent, the time adaptivity of the algorithm

over several orders of magnitude enables us to deal with (almost) brittle dynamics.

If there are flaws or cracks present during the process of phase separation in an alloy, these affect

the formation of domains. It is demonstrated that stress concentrators serve as nucleators for the

spinodal instability and that soft material is favored to accumulate at these sites. During propa-

gation, cracks are deflected by domain boundaries, [2]. The degree of deflection is determined by

the inclination angle and the stiffness ratio of the domains. Samples of failed Sn Pb -solder joints

show fracture, in particular, at the interface between the material phases.

Mathematical models and theory of electrochemical processes

Modeling and analysis of many-particle electrodes and a new Nernst–Planck–Poisson model for

lithium-ion batteries. Funding was obtained for the ECMath project SE17 “Stochastic methods

for the analysis of lithium-ion batteries”, headed by Jean-Dominique Deuschel (TU Berlin), Wolf-

Fig. 4: Material phase field
evolution under linearly
increasing mechanical stress

gang Dreyer (RG 3 Numerical Mathematics and Scientific Computing), Clemens Guhlke (RG 7), and

Peter Friz (RG 6 Stochastic Algorithms and Nonparametric Statistics). The previously developed

mathematical model for many-particle electrodes of lithium-ion batteries is further extended to

include new features such as volume expansion of the particles due to the lithium intercalation

process and nonlinear constitutive relations of Butler–Volmer type for the surface reactions.

Another focus concerns the rigorous analysis of models developed for the flow of liquid elec-

trolytes. Here, a breakthrough existence result for global-in-time weak solutions [3] was achieved.

Multiple challenges arising from coupling a nondiagonal reaction-diffusion system to the com-

pressible Navier–Stokes equations for the barycentric velocity of the fluid and the Poisson equa-

tion for the electrical potential were overcome, allowing, in particular, to treat the chemical reac-

tions without the technique of renormalization. Further results regarding the nondiagonal doubly

nonlinear parabolic system with quasilinear flux functions, both for the local- and the global-in-

time analysis were obtained in [4]. Funding for a new DFG proposal “Analysis of improved Nernst–

Planck–Poisson models for incompressible electrolytic mixtures subject to chemical reactions”

was obtained by Pierre-Etienne Druet as the Principal Investigator.
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Sensing with nanopores. The focus of the new ECMath project CH11 “Sensing with nanopores”,

headed by Jürgen Fuhrmann (RG 3) and Clemens Guhlke (RG 7), concerns the detection and anal-

ysis of macromolecules like DNA strands via their electrical response when passing a nanopore

in a membrane separating two electrolyte reservoirs with an applied potential difference. In or-

der to achieve a better understanding of the generated current and characteristic properties of

the macromolecule, an appropriate nanopore model in the context of non-equilibrium thermody-

namics is being developed that accounts for the geometrical properties of pore and analyte, the

charged boundary layers, ion diffusion, and fluid flow. Novel numerical discretization schemes,

like pressure-robust methods for fluid flow, and novel finite volume discretization approaches for

the Poisson–Nernst–Planck system were derived in order to provide physically meaningful numer-

ical models of the double layer structure and its impact on the fluid flow. Asymptotic analysis is

used to derive reduced models that include the relevant features of the complete thermodynamic

model and to drastically reduce the computation time of the numerical simulation.

Successful proposal within the BMBF Call Mathematics for Innovation as a Contribution to
the “Energiewende”.
Within the BMBF call, RG 7 submitted a joint proposal with Prof. Mario Ohlberger (WWU Münster),

Prof. Volker Schmidt (Universität Ulm), Prof. Sven Simon and Prof. Kai Birke (both Universität Stutt-

gart), as well as four partners from industry. The proposal “MALLi 2 – Modellbasierte Abschätzung

der Lebensdauer von gealterten Li-Batterien für die 2nd-Life Anwendung als stationärer Stromspei-

cher” (Model-based assessment of the life span of aged Li batteries for second-life use for sta-

tionary energy storage) was positively evaluated by the end of 2017 with Manuel Landstorfer and

Barbara Wagner of RG 7 as project coordinators.

Fig. 5: Model-based
assessment of the life span
of aged Li batteries for
second-life use for
stationary energy storage

The project aims to improve the lifetime estimation of lithium-ion batteries from electric vehicles

for their continued use as stationary energy storage devices. Lithium-ion batteries are used in elec-

tric cars up to a capacity of 80% of their initial value, which is reached after about 10 years. Beyond,

the capacity/weight ratio is not sufficient anymore for mobile applications, but the batteries can

be recycled to become stationary devices for at least another 10 years. This so-called second-life

application provides a substantial electricity storage capacity by the year 2020, which is urgently

needed for the German Energiewende (exit from nuclear and fossil-fuel energy), and which recently

drew a lot of attention in politics and industry.

In order to ensure safety and capacity obligations for the second-life application, detailed knowl-

edge of the battery behavior at a 20-year scale is required. Since this is a very time-consuming

task in a laboratory, mathematical modeling and simulation can help to identify the central ageing
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mechanisms and quantify their impact on the battery capacity degradation. Homogenization and

multi-scale techniques will be used within the project MALLi 2 to embed various ageing phenom-

ena in the electrochemical model framework, which was developed at WIAS in the last years.

Free boundary problems of active gels

A new free boundary problem for an active liquid crystal based on the Beris–Edwards theory is for-

mulated that uses a tensorial order parameter to allow for a description of the rich defect structure

observed in applications, such as the adenosine triphosphate (ATP)-driven motion of a thin film

of an actin filament network. In addition, the small aspect ratio of the film geometry allows for a

reduction of the free boundary problem under the assumption of weak elasticity of the network

and strong activity terms. For these simplified models it is found for various boundary and anchor-

ing conditions that the active terms can completely change the dynamics and flow structure of the

active film [6].

Hysteresis, electromagnetic-mechanical components, and uncertainty quantification

The application of the methods of uncertainty quantification to models involving hysteresis opera-

tors were presented in a series of talks by Olaf Klein at the Summer School on Multi-Rate Processes,

Slow-Fast Systems and Hysteresis MURPHYS-HSFS-2017, June 19–20, 2017, in Turin, Italy.

Moreover, using experimental data for Terfenol-D provided by Daniele Davino (Benevento), appro-

priate values for the parameters for a generalized Prandtl–Ishlinskĭı operator as in Sec. 5.1 of

Davino–Krejčí–Visone (2013) and the information on the uncertainty of these parameters were

determined by applying Bayes’ theorem.
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4.8 Research Group 8 “Nonsmooth Variational Problems and

Operator Equations”

The focus areas of this research group are the mathematical modeling and analysis of the resulting

variational problems or operator equations, as well as the design, analysis, and computer-oriented

realization of the pertinent solution algorithms. Particular fields of interest include

� nonsmooth models for energy functionals and/or state systems,

� quasi-variational inequality problems or nonsmooth coupled systems and their optimal (open

loop) control,

� equilibrium problems and game-theoretic approaches.

Concerning applications, various processes in medicine, nature, engineering, and economy play

a central role. Regarding WIAS’s main application areas, the research group contributes to Quan-

titative Biomedicine, Optimization and Control in Technology and Economy, as well as aspects of

Materials Modeling. In all instances, nonsmooth and set-valued analysis or geometry for the treat-

ment of nonsmooth systems of partial differential equations (PDEs) or nonsmooth energies on

infinite-dimensional spaces are advanced. In this way, compromising smoothing schemes, which

are often responsible for wrong system predictions, are avoided.

RG 8 commenced its research activities in 2016 and continued to expand in 2017. Within WIAS,

it broadened its agenda and scope, and added personnel over the year. In particular, Kostas Pa-

pafitsoros and Carlos N. Rautenberg became members of the group in the period of report. Several

new members started via funding from the Einstein Center for Mathematics Berlin and the DFG Pri-

ority Program SPP 1962 Non-smooth and Complementarity-based Distributed Parameter Systems:

Simulation and Hierarchical Optimization, in some cases also in joint activities with Humboldt-

Universität zu Berlin. Specifically, this concerns Guozhi Dong, Steven-Marian Stengl, Andrea Cere-

tani, and Rafael Arndt.

General relevance of the scientific topics considered by the RG

Many challenging problems in applied sciences involve non-differentiable structures together with

partial differential operators. In general, the nonsmoothness arises via problem formulation, is

determined by competition/hierarchy, or appears by constraints, complementarity, or switching

systems. For example, in the manufacturing process of thermoforming, a heated plastic sheet in a

pliable stage is forced towards a mold to acquire a desired shape. The associated mathematical

formulation rests on a non-penetration condition determining a natural nonsmoothness and, in

addition, heat transfer and the heat expansion of the mold add a new nonsmooth structure leading

to a quasi-variational inequality. Additionally, when optimization problems are considered, like in

the optimal control of conservation laws or, again, quasi-variational inequalities, novel differentia-

bility concepts and results (for the control-to-state map) are required to provide further structural

insight.
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Nonsmooth energies have been considered in recent years in the context of medical image pro-

cessing. In particular, RG 8 was involved in this line of research by optimally choosing specific

nonsmooth regularization functionals in weighted total variation models leading to better image

reconstructions than state-of-the-art methods.

In optimal control of technical processes or pertinent game-theoretic approaches in case of multi-

objective/multi-control situations, one typically needs to account for constraints on the common

state of the underlying system. Generalized Nash equilibria provide the proper concept in such a

context, thus leading to a nonsmooth and typically set-valued generalized PDE system characteriz-

ing such equilibria.

The research development within RG 8 is aimed at properly capturing the nonsmooth nature of un-

derlying mathematical models, and control problems thereof. In this vein, compromising smooth-

ing techniques are avoided, suitable generalized differentiability concepts are established, and

discretization schemes are tailored to each specific application. In light of such approaches, large

problem classes like scalar nonlinear conservation laws and quasi-variational inequalities

together with their control are addressed. Besides theoretical developments, also mesh-independ-

ent/adaptive solvers are analyzed, designed, and further advanced.

This philosophy behind RG 8’s research ansatz led to a series of results in several application

fields, successful project acquisitions, and cooperations with industry.

Selected research results

Nonsmooth models for energy functionals and/or state systems. Nonsmooth regularization

functionals play a central role in variational approaches for inverse problems due to their excellent

ability to preserve edges. During the recent years, total variation-type functionals, which exploit

structural similarity of the reconstruction u to some a priori known information v , have become

increasingly popular. They typically incorporate gradient information in a pointwise fashion:

J (u) =
∫
�

jv(x,∇u(x)) dx .

These techniques are particularly relevant in multimodal medical imaging, where, for instance, in-

formation from one modality, e.g., a magnetic resonance (MR) image can be exploited in the re-

construction process of another modality, e.g., positron emission tomography (PET). In a recently

completed project [1], we introduced and analyzed a function space framework for a large class

of such structural total variation (TV) functionals that are typically used in the above context. This

is particularly important, since in function space there is a thorough mathematical description of

prominent image features, e.g., edges, which are modeled as discontinuities of functions that typ-

ically belong to the space of functions of bounded variation. We defined the structural TV func-

tionals in function space, as appropriate L p lower semicontinuous envelopes (relaxations) of

functionals of the type J as above — note that J is well-defined only when ∇u is an integrable

function. We showed that these relaxations J∗∗ can have a precise integral representation only in

certain restrictive cases. However, we showed through a general duality result that formulation of

the Tikhonov regularization problem in function space can still be understood via its equivalence

to a corresponding saddle-point formulation, where no knowledge of the precise formulation of
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J∗∗ is needed. Thus, our work allows the function space formulation of a wide class of multimodal

medical imaging problems.

MRI prior Ground truth PET Standard TV Structural TV

Fig. 1: Better reconstruction
of the edges of a PET image
using an MRI image as
structural prior

Figure 1 depicts such an example where the structural TV functional is appropriately tuned to pro-

mote edge alignment of a PET reconstruction to an already reconstructed MRI image. As a result,

the edges in the PET reconstruction are more enhanced.

Additionally, in [3] an extension to TV-type models was addressed, a solution algorithm developed,

and numerical tests were provided.

The ECMath CH12 project “Advanced magnetic resonance imaging: Fingerprinting and geometric

quantification”, which was initiated in June 2017, is also focused on the precise mathematization

and incorporation of analytical techniques that target to improve modern medical imaging modal-

ities. In particular, in a recent work associated with the project, we applied uncertainty quantifica-

tion techniques in image segmentation. Here, we developed a better understanding on the behav-

ior of edges with respect to certain error types and we gave a mathematical meaning to the informal

term of random edges, based on the Ambrosio–Tortorelli approximation of the Mumford–Shah seg-

mentation model. We developed methods that can detect areas where it is likely to encounter an

edge under the presence of uncertainty; see Figure 2.

Fig. 2: Left: original image;
middle: result for the noise
model; right: result for a
motion blur model

Quasi-variational inequalities and their optimal control. Project P11 “Optimal control of ellip-

tic and parabolic quasi-variational inequalities” in the DFG Priority Program SPP 1962 considered

optimization problems and differentiability issues involving quasi-variational inequalities. In the
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reported period, directional differentiability of the control-to-state map for a class of elliptic quasi-

variational inequalities was studied, and a positive answer to this research question was obtained.

The result was proven involving selection procedures for the solution set and represents the direc-

tional derivative as the limit of a monotonic sequence of directional derivatives associated with

specific variational inequalities; see Figure 3 for a numerical realization.

State (blue), obstacle (red) Directional derivative

Fig. 3: Solution to the
thermoforming model. Left:
state/membrane/plastic sheet
(blue) and compliant obstacle (red).
Right: directional derivative of the
state in direction h = 1

Additionally, RG 8 made contributions to the study of quasi-variational problems of dissipative and

non-dissipative type with gradient constraints in [7]. A semi-discretization in time was employed

for the study of the problems and the derivation of a numerical solution scheme, respectively.

Convergence of the discretization procedure was proven and properties of the original infinite-

dimensional problem, such as existence, extra regularity and non-decrease in time, were derived.

The proposed numerical solver reduces to a finite number of gradient-constrained convex optimiza-

Fig. 4: Magnetic field in a
type-II superconductor

tion problems, which can be solved rather efficiently. Particular applications of the latter involve

superconductivity, where the evolution of the magnetic field in a type-II superconductor can be

modeled via Bean’s critical state model, which admits an equivalent quasi-variational formulation.

In Figure 4, we depict the behavior of the magnetic field for large times obtained with the proposed

algorithm.

In a similar vein, in [8] the development of solvers for quasi-variational inequality models deter-

mined by fixed points of discontinuous maps was carried out. Particular applications are the evo-

lution of the free growth surface for accumulation of granular cohensionless materials and the

determination of river and lake networks over complex topographies depending on the respective

angle of repose1. In Figure 5, we show the accumulation of material for high and low angle of

repose, resembling a sandpile and accumulation of water and watercourses, respectively.

t = 0, Source location (blue) t = 0.3, high angle of repose t = 0.3, low angle of repose

Fig. 5: Accumulation of material for high and low angles of repose at time= 0.3

Optimal control and inverse problems of balance laws with applications in gas networks The

current shift in energy policy from nuclear energy to renewable ones and other energy carriers

such as hydrogen has triggered a surge in need for optimal use of such energy resources. It is

1The steepest angle at which a sloping surface formed of loose material is stable.
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widely believed that gas plays a paramount role as an intermediate energy resource during this

transition. In this regard, RG 8 participates in the DFG Collaborative Research Center SFB/TRR 154

Mathematical Modeling, Simulation and Optimization using the Example of Gas Networks.

In the report period, discretization methods for scalar hyperbolic conservation laws in the opti-

mal control context were investigated. In [4], stability properties of the Total Variation Diminishing

Runge–Kutta (TVD-RK) methods, which are crucial for the convergence of the discretizations of the

hyperbolic problems, were shown. Moreover, properties of the TVD-RK methods were studied in

the context of optimal control; see [4, 5].

Moreover, within the SFB/TRR 154 project, for semilinear systems of balance laws, modeling gas

flow in pipes, identification problems for the friction coefficient were addressed. Generally speak-

ing, the friction coefficient describes the roughness of the interior walls of the pipes and influences

the transport in a decisive way. In [6], the existence of broad solutions of the underlying PDE is

proven and sensitivity results for the corresponding solution operator are obtained. In this way,

the identification problem was addressed in a deterministic setting.

Important questions in the optimization of gas networks are related to the study of probabilistic

constraints, involving the friction coefficient, which is uncertain in general. The associated math-

ematical formulations indeed depend on statistical properties of the associated uncertain quanti-

ties, such as the mean value, standard deviation, or even the entire distribution. For this purpose,

a Bayesian framework for the inversion process in infinite dimensions was employed. Some nu-

merical results in this direction are shown in Figure 6, where the identified friction coefficients

with highest probability (blue lines) are plotted against the true friction coefficient (orange line).

This project also led to the release of a public software package for Bayesian inverse problems of

gas pipes which is available at https://github.com/fg8/UQ.

18 Soheil Hajian, Michael Hintermüller, Claudia Schillings and Nikolai Strogies
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Fig. 5.7. Mean functions of the three clusters obtained from Algorithm 2 when noise is present
(N = 4).
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Fig. 5.8. Mean functions of the four clusters obtained from Algorithm 2 (N = 5).

10−4. The setting is same as in the noise-free experiment and Algorithm 1 is used for
sampling along with the post-processing step of Algorithm 2 with ncluster = 3. The
result is depicted in Figure 5.7.

Increasing the truncation parameter. We now increase the truncation pa-
rameter N in the prior model (4.2). Observe that in Figure 5.8, the approximation has
improved in the sense that we can capture the second bump located at x = 0.75 more
accurately, and the gap between the first and second gap in the interval [0.25, 0.75]
is better approximated compare to Figure 5.5 (where N = 4). Similar results can be
obtained for N = 6, which we plot in Figure 5.9. For the last experiment, we have
chosen the number of clusters to be ncluster = 6 and plotted the first four clusters.

Fig. 6: Application of the
Bayesian inversion in the
identification of the friction
coefficient of the gas pipes

Further highlights in 2017

The DFG Priority Program SPP 1962 Non-smooth and Complementarity-based Distributed Parame-

ter Systems: Simulation and Hierarchical Optimization coordinated by Michael Hintermüller with

WIAS as the coordinating institution is successfully running, and the annual meeting was held

in October 9–11 scheduling additional keynote lectures. In connection to this event, the Autumn
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School on Nonsmooth Structures in Mathematical Models 2017 was organized from October 11–

14.

From August 29 to December 20, Michael Hintermüller co-organized the program “Variational Meth-

ods and Effective Algorithms for Imaging and Vision” at the Isaac Newton Institute for Mathemati-

cal Sciences, University of Cambridge, UK.

The CIM-WIAS Workshop was coorganized with the International Center for Mathematics in Lisbon

on “Topics in Applied Analysis and Optimisation” and took place in Lisbon from December 6–8.

Additionally, Michael Hintermüller was part of the conference organizers for the 4th Conference on

Optimization Methods and Software that took place from December 16–20 in Havana, Cuba.
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4.9 Weierstrass Group 1 “Modeling, Analysis, and Scaling

Limits for Bulk-Interface Processes”

This group was installed at WIAS in April 2017 as a new element of the Flexible Research Platforms.

Fig. 1: Start of the
Weierstrass Group in April
2017

It is partly funded from WIAS budget for three years with an evaluation at the end of this period.

The research goals of the group are the development of mathematical methods for systems with

bulk-interface processes for the thermodynamically consistent modeling of bulk-interface interac-

tion with dissipative, Hamiltonian, and coupled dynamics, the theory for the existence and qual-

itative properties of solutions, and the derivation and justification of interfacial processes and

coupling conditions.

The analytical results form the basis for the development of numerical algorithms supporting sim-

ulations for applications with bulk-interface interaction. The applications treated in the group be-

long to three main application areas of WIAS, namely Materials Modeling, Nano- and Optoelectron-

ics, and Flow and Transport. In particular, the following applications are currently on the agenda

of the group: (1) dissipative processes in elastic solids with bulk-interface interaction, such as,

e.g., damage, fracture, plastification; (2) optoelectronic processes in mechanically strained semi-

conductor devices; (3) viscous flows with free boundaries and contact lines. The group also con-

tributes to the organization of the Materials Modeling Seminar and the Semiconductor Seminar of

the institute.

The following is a summary of the results from 2017 for these three topics:

Fig. 2: Left: mechanical
stresses and progression of
damage for a tension test
with a notched bar. Middle:
electrical current in an
optimized germanium laser.
Right: P1 FEM solution of
free boundary problem
showing droplets sliding
down an inclined plane.

Dissipative processes in elastic solids. The fourth quarter of 2017 saw the start of the second

phase of the DFG Priority Programme SPP 1748 Reliable Simulation Techniques in Solid Mechan-

ics. Development of Non-standard Discretisation Methods, Mechanical and Mathematical Analysis.

Based on their previous project “Finite element approximation of functions of bounded variation

and application to models of damage, fracture, and plasticity”, Marita Thomas and Sören Bartels

(U Freiburg) participate in the second funding phase with the joint project “Reliability of efficient

approximation schemes for material discontinuities described by functions of bounded variation”.

Figure 2 (left) shows the progression of fracture and the mechanical stresses in a mode-I tension

test. It is based on a variable alternating-direction method-of-multipliers algorithm for a damage

model with a spatial bounded variation (BV) regularization for a rate-independent damage evolu-

tion and a quasistatic evolution of the displacements. The new project will also deal with approxi-

mation techniques for dynamic fracture.

In 2017, also the proceedings volume of “PDE 2015: Theory & Applications of Partial Differential

Equations” was published as the special volume of DCDS-S Discrete Contin. Dyn. Syst. Ser. S, 10:4
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(2017), guest-edited by Hans-Christoph Kaiser, Joachim Rehberg, Alexander Mielke (RG 1 Partial

Fig. 3: DCDS-S Special
Volume 10:4 (2017)

Differential Equations) and Marita Thomas (WG 1) together with Dorothee Knees (U Kassel), Elis-

abetta Rocca (U Pavia), and Enrico Valdinoci (Politecnico di Milano). Organized by this group of

researchers, the international workshop was held at WIAS, Nov. 30 – Dec. 04, 2015, and brought

together analysts furthering the theory of PDEs and analysts working on applications involving non-

smooth PDEs. It was attended by more than 100 mathematicians from these fields of research from

16 different countries. The proceedings volume with its 16 contributed research papers gives good

insights into recent questions and results in the theory and applications of PDEs with contributions

on harmonic and geometric analysis & inequalities, evolution equations, and elliptic systems as

well as on results in applications with free or moving boundaries, and dissipative solids.

Optoelectronic processes in mechanically strained semiconductor devices. In June 2017, the

ECMath-funded MATHEON Subproject OT8 “Modeling, analysis, and optimization of optoelectronic

semiconductor devices driven by experimental data” started as a successor of Subproject OT1

“Mathematical modeling, analysis, and optimization of strained germanium microbridges”, which

bases on the collaboration with experimentalists from the Leibniz institute IHP – Innovations for

High-Performance Microelectronics in Frankfurt (Oder). The goal of the project is the development

of a reliable second-order doping optimization framework for the system of optoelectronics as

shown in Figure 2 (middle), combined with a topology optimization as an input; the latter was de-

signed in collaboration with RG 8 Nonsmooth Variational Problems and Operator Equation. Based

on this, methods for the parameter indentification of material data for strained germanium are

to be developed. The current state of research was presented at the NUSOD 2017 Conference in

Copenhagen and will appear in the journal Optical and Quantum Electronics. Since the numeri-

cal approach is based on finite element methods (FEM), a study in the WIAS ddfermi initiative,

jointly with RG 3 Numerical Mathematics and Scientific Computing, examines the convergence of

the corresponding method compared to improved Scharfetter–Gummel methods for general distri-

bution functions; see https://www.wias-berlin.de/software/ddfermi/.

Fig. 4: D. PESCHKA,
B. WAGNER, S. JACHALSKI,
S. BOMMER, R. SEEMANN,
Chapter 18: Structure
Formation in Thin
Liquid–Liquid Films,
Springer, 2017,
pp. 531–574.

Viscous flows with free boundaries and contact lines. The group works on the modeling and

simulation of viscous fluid flows with a particular focus on multiphysics descriptions including

mixtures and suspensions, multiphase flows, interface and contact line models, and also aims at

their coupling to elasticity models for solids. A common topic in these problems is the presence of

a free interface with extra contributions to energy and dissipation. Their implementation requires

careful and systematic modeling and simulation approaches. Results from this research were pre-

sented in 2017, among others, in invited lectures at an ICERM workshop at the Brown University

in Providence (USA), at the Universität der Bundeswehr (Munich), and at the SISSA International

School for Advanced Studies (Trieste). Moreover, to advance the available tools for the FE simula-

tion of free boundary problems, a cooperation with Prof. Luca Heltai (SISSA) was established with

regard to the deal.II FEM-library (www.dealii.org). From the past joint project “Structure for-

mation in thin liquid–liquid films” in the DFG SPP 1506 Transport Processes at Fluidic Interfaces

with Barbara Wagner (RG 7 Thermodynamic Modeling and Analysis of Phase Transitions) and Ralf

Seemann (U Saarland), a review article was published in the book “Advances in Mathematical Fluid

Mechanics” in 2017. The simulation results in Figure 2 (right) are generated by a novel free bound-

ary problem formulation for thin films and are based on an energetic formulation that combines

FEM and arbitrary Lagrangian–Eulerian methods for moving meshes.
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A.1 Professorships, Awards, Habilitations, Ph.D. Theses,

Supervision

A.1.1 Offers of Professorships

1. CH. MUKHERJEE, Junior Professorship, April 1, Westfälische Wilhelms-Universität Münster, Fachbereich Ma-
thematik und Informatik.

A.1.2 Awards and Distinctions

1. CH. D’ALONZO, Leibniz-Auszubildendenpreis, 2. Platz (Leibniz Award for Apprentices, second place), Novem-
ber 29, 2017.

2. M. HINTERMÜLLER, Chair of the Einstein Center for Mathematics Berlin.

3. , Member of MATHEON’s Executive Board.

4. D. HÖMBERG, Member of 7th Technical Committee (TC7) of the International Federation for Information Pro-
cessing (IFIP) on System Modeling and Optimization.

5. , Vice Chair of Cost Action TD1409 (Mi-NET).

6. , President of the European Consortium for Mathematics in Industry (ECMI), 2016/17.

7. H.-CHR. KAISER, Deputy Spokesperson of the Representative Bodies for Disabled Employees of the Leibniz
Association, 2017.

8. W. KÖNIG, Member of MATHEON’s Executive Board.

9. M. LIERO, Member of the Executive Board of the Einstein Center for Mathematics Berlin (Scientific Employee
Representative).

10. A. MIELKE, Chair of the Prize Committee for the ICIAM Prizes 2019.

11. , Head of the Secretariat of the International Mathematical Union (IMU).

12. , Member of MATHEON’s Executive Board.

13. , Member of the Executive Board of the Einstein Center for Mathematics Berlin.

14. , Member of the IMU Berlin Einstein Foundation Program Committee.

15. , Treasurer of IMU.

16. D. PESCHKA, Member of MATHEON’S Executive Board (Scientific Employee Representative).

A.1.3 Habilitations

1. M.H. FARSHBAF SHAKER, Optimization problems governed by Allen–Cahn and Cahn–Hilliard type systems
with control and state constraints, Technische Universität Berlin, Fakultät II – Mathematik und Naturwis-
senschaften, supervisor: Prof. Dr. D. Hömberg, February 14.

2. K. DISSER, Optimal elliptic and maximal parabolic regularity in non-smooth settings and applications to bulk-
interface processes, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, Octo-
ber 18.
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A.1.4 Defenses of Ph.D. Theses

1. N.L. NAUMANN, Quantum control of light and matter fields in the nonlinear regime, Technische Universität
Berlin, Fakultät II – Mathematik und Naturwissenschaften, supervisors: Priv.-Doz. Dr. U. Bandelow, Prof. Dr.
A. Knorr, November 29.

2. S. RÖSEL, Approximation of nonsmooth optimization problems and elliptic variational inequalities with appli-
cations to elasto-plasticity, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät,
supervisor: Prof. Dr. M. Hintermüller, February 7.

3. L. ANDREIS, McKean–Vlasov limits, propagation of chaos and long-time behavior of some mean field inter-
acting particle systems, Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata,
supervisor: Prof. Dr. P. Dai Pra, November 16.

4. A. SUVORIKOVA, Detection of structural breaks in complex data, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Prof. Dr. V. Spokoiny, June 15.

A.1.5 Supervision of Undergraduate Theses

1. R. ARNDT, A time-dependent quasi-variational inequality with a gradient constraint arising from a model of
sandpile growth (diploma thesis), Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät, supervisor: Prof. Dr. M. Hintermüller, August 23.

2. M. BAHN, From diffusion to reactions via EDP convergence (master’s thesis), Humboldt-Universität zu
Berlin, Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Prof. Dr. A. Mielke, October 4.

3. F.L. BIERBÜSSE, Ultrakurze dunkle optische Solitonen – Herleitung der “Short Pulse Equation” für
eine defokussierende Nichtlinearität und Untersuchung von solitären Lösungen (master’s the-
sis), Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, supervisor:
Priv.-Doz. Dr. U. Bandelow, June 27.

4. Y. FREYTAG, Optimal experimental design to estimate the time of death in a Bayesian context (master’s
thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. D. Hömberg, March 2.

5. CH. GRAMSTAT, Irrfahrten auf Netzwerken (bachelor’s thesis), Technische Universität Berlin, Fakultät II —
Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, January 20.

6. B. GROSS, Robust higher order decomposition via optimization on manifolds (diploma thesis), Humboldt-
Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Prof. Dr. M. Hintermüller,
January 9.

7. C. HINSEN, Das parabolische Anderson-Modell mit korreliertem Potential (master’s thesis), Technische Uni-
versität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, July 1.

8. T. KALINOWSKI, Ein Gibbs-Ansatz für Nachrichtentrajektorien in einem hochdichten Kommunikationsnetz-
werk mit mehreren Basisstationen (bachelor’s thesis), Technische Universität Berlin, Fakultät II — Mathe-
matik und Naturwissenschaften, supervisor: Prof. Dr. W. König, October 6.

9. M. LABIB, Optimalität in dynamischen Zuweisungsproblemen (bachelor’s thesis), Technische Universität
Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, March 4.

10. R. MARQUARDT, Zeit- und energiebezogene Optimierung in Dioiden (master’s thesis), Technische Univer-
sität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. D. Hömberg, Jan-
uary 25.
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11. T. MASSEL, Informationskapazität in großen zufälligen Kommunikationsnetzwerken (master’s the-
sis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, December 26.

12. S. MASSHAFI, Voraussagen im Poisson-Cluster-Modell (bachelor’s thesis), Technische Universität Berlin,
Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, September 28.

13. K. METZGER, Optimale Steuerung eines nichtlinearen Produktionsmodells (master’s thesis), Technische
Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. D. Hömberg,
March 2.

14. K. MUNDINGER, Perkolation mit Interferenz bei beschränkter Sprungzahl (bachelor’s thesis), Technische
Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König,
March 16.

15. L. NEUMS, Das Kreisgesetz für das Spektrum großer zufälliger Matrizen (bachelor’s thesis), Technische
Universität Berlin, Fakultät II – Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König, Octo-
ber 25.

16. K. NOWORYTA, Modellierung und Analyse eines hochdichten zufälligen Telekommunikationssystems (mas-
ter’s thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, April 4.

17. A. PAN, Regularität des Coulomb-Funktionals bezüglich des Brownschen Aufenthaltsmaßes (bachelor’s
thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, March 17.

18. S. PETER, Higher-order robust principal component pursuit by inexact alternating minimisation on ten-
sor manifolds (master’s thesis), Humboldt-Unversität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät, supervisor: Prof. Dr. M. Hintermüller, April 20.

19. F. PETERS, Punktprozesskonvergenz der lokalen Maxima eines Gauß’schen Feldes (master’s thesis), Techni-
sche Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König,
October 17.

20. P.M. REIF, Lösung eines inversen Problems in einem diffusiven Phasenübergangsmodell (bachelor’s
thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. D. Hömberg, September 11.

21. J. RUTZ, Optimierung der Zeitdifferenz bis zum Auftreten eines besseren zufälligen Wertes (bachelor’s
thesis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, August 30.

22. L. SCHMELLER, Innere-Punkte-Verfahren mit Filter und Liniensuche (bachelor’s thesis), Technische Univer-
sität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. D. Hömberg, Octo-
ber 3.

23. J. SCHMIDT, Die Gesamtmasse der Lösung des parabolischen Anderson-Modells (bachelor’s thesis), Techni-
sche Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König,
October 7.

24. S. SIVAGNANASUNDARAM, Fluktuation prozesswertiger Ordnungsstatistiken (bachelor’s thesis), Technische
Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor: Prof. Dr. W. König,
March 4.

25. A. WAPENHANS, Das parabolische Anderson-Modell mit zeitabhängigem Katalysator (master’s the-
sis), Technische Universität Berlin, Fakultät II — Mathematik und Naturwissenschaften, supervisor:
Prof. Dr. W. König, June 16.
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26. ST.-M. STENGL, Bildsegmentierung im Mumford-Shah-Modell: Analysis und Numerik mit anschließender
Quantifizierung von Unsicherheiten für fehlerhafte Bilder (master’s thesis), Humboldt-Unversität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät, supervisor: Prof. Dr. M. Hintermüller, June 12.
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A.2 Grants1

European Union, Brussels

� Seventh Framework Programme

ERC Advanced Researcher Grant “AnaMultiScale – Analysis of Multiscale Systems Driven by Functionals”
(Prof. A. Mielke in RG 1)

The project ERC-2010-AdG no. 267802 is part of RG 1, has been funded by the European Research Council
since April 2011, and lasts for six years. The research topics include the modeling and analysis of cou-
pled physical systems such as elastic solids with internal variables, reaction-diffusion systems, and op-
toelectronics. The methods include variational techniques, gradient structures, Gamma convergence, and
nonlinear PDE tools.

ERC Consolidator Grant “GPSART – Geometric Aspects in Pathwise Stochastic Analysis and Related Top-
ics” (Prof. P. Friz in RG 6)

The project ERC-2015-CoG no. 683164 takes part in RG 6 and is funded for the duration from September
2016 to August 2021. Its purpose is to study a number of important problems in stochastic analysis, in-
cluding the transfer of rough paths ideas to Hairer’s regularity structures, the study of rough volatility in
quantitative finance, a pathwise view on stochastic Loewner evolution, and an understanding of the role
of geometry in the pathwise analysis of fully nonlinear evolution equations. This project is run jointly with
the Technische Universität Berlin.

EU Marie Skłodowska-Curie Innovative Training Networks – European Industrial Doctorate ITN-EID “MIME-
SIS – Mathematics and Materials Science for Steel Production and Manufacturing” (in RG 3 and RG 4)

The EID project MIMESIS started in October 2015. Driven by the five partners EFD Induction (Norway), SSAB
Europe Oy and Outokumpu Stainless OY (Finland), the University of Oulu (Finland), and WIAS, eight doc-
toral thesis projects are jointly carried out, providing a unique interdisciplinary and inter-sectorial training
opportunity. The research is focused on three major topics: induction heating, phase transformations in
steel alloys, and gas stirring in steelmaking ladles. MIMESIS has a budget of 2.1 million euros and is coor-
dinated by the head of RG 4, Prof. D. Hömberg.

EU Framework Eurostars (in RG 2)

Eurostars supports international innovative projects of research- and development-performing small- and
medium-sized enterprises. It is a joint programme between EUREKA and the European Commission, co-
funded from the national budgets of 36 Eurostars participating states and partner countries and by the
European Union through Horizon 2020. RG 2 is a full partner within the Eurostars project E!10524 “High
power composites of edge emitting semiconductor lasers” (HIP-Lasers, 2016–2019), which aims to im-
prove the quality of high-power laser beams by a specially designed intracavity photonic-crystal-type filter
and a novel beam-combining scheme.

European Cooperation in Science & Technology (COST) Actions (in RG 4)

The “Mathematics for Industry Network (MI-NET)” is a COST-funded action, which aims to facilitate more ef-
fective widespread application of mathematics to all industrial sectors, by encouraging greater interaction
between mathematicians and industrialists.

1The research groups (RG) involved in the respective projects are indicated in brackets.
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Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research), Bonn

� Fördermaßnahme “Effiziente Hochleistungs-Laserstrahlquellen” (Funding program: Efficient high-perfor-
mance laser beam sources, EffiLAS) in the framework of the programme “Photonik Forschung Deutschland”
(Photonics Research Germany)

This measure supports enterprises in the research and development of innovative laser beam sources and
components with a large application and market potential. RG 2 acts as a subcontractor of Ferdinand-Braun-
Institut für Höchstfrequenztechnik, Berlin, within the projects “Effiziente und brillante Breitstreifendioden-
laser mit hohen Leistungen für den Betrieb bei hohen Umgebungstemperaturen” (Efficient and brilliant
high-power broad-area diode lasers for operation at high temperatures, HotLas, 2016–2019) and “Puls-
Laser und Scanner für LiDAR-Anwendungen: Automotive, Consumer, Robotic” (Pulse lasers and scanners
for LiDAR applications: Automotive, consumer, robotic, PLUS, 2016–2019), both aiming to improve the
quality of semiconductor high-power lasers.

� Fördermaßnahme “Wissens- und Technologietransfer — Entwicklung, Umsetzung und Professionalisie-
rung von Verwertungskonzepten aus Mathematik, Natur- und Ingenieurwissenschaftlichen Leibniz-Ein-
richtungen der Sektion D und aus Helmholtz-Zentren im Nicht-Life-Science-Bereich” (Funding program:
Transfer of knowledge and technology — Development, implementation, and professionalization of trans-
fer concepts from institutes of the Leibniz Association’s Section D with a focus on mathematical, natural
scientific, or engineering research as well as from Helmholtz Centers not working in the life sciences)

“Professionalisierung und Verstetigung des Verwertungskonzeptes am Weierstraß-Institut für Angewandte
Analysis und Stochastik – WIAS” (Professionalization and implementation of dissemination strategies at
WIAS; in Director’s office)

� Forschungsinitiative “Energiespeicher” der Bundesregierung (Research Initiative Energy Storage Systems
of the German Federal Government)

The Research Initiative Energy Storage Systems intends to accelerate the development of energy storage
technologies in Germany. The federal government funds the development of new energy storage technolo-
gies and concepts, as well as the improvement of existing techniques. This will create an important pre-
condition for a successful extension of renewable energies. The initiative is supported by the Ministry of
Education and Research (BMBF), the Ministry for the Environment, Nature Conservation and Nuclear Safety
(BMU), and the Ministry of Economics and Technology (BMWi). In this framework, WIAS (RG 3) ran from
2013 to 2017 the Subproject „Makroskopische Modellierung von Transport- und Reaktionsprozessen in
Magnesium-Luft-Batterien“ (Macroscopic modeling of transport and reaction processes in magnesium-air
batteries) in the Interdisciplinary Research Network “Perspektiven für wiederaufladbare Magnesium-Luft-
Batterien” (Perspectives for rechargeable magnesium-air batteries). Project partners were German experi-
mental and theoretical groups in the field of electrochemistry.

Bundesministerium für Wirtschaft und Technologie (Federal Ministry of Economics and Technol-
ogy), Berlin

� Support Programme EXIST: EXIST Business Start-up Grants

“MSim – Microelectronic Simulations” is the preparation for a spin-off of WIAS (RG 3). Dr. Lennard Kamen-
ski, Dr. Klaus Gärtner, and Dr. André Fiebach are preparing a business start-up in connection with an inno-
vative industrial software for microelectronic simulations during the design phase of the semiconductor
device development for the estimation of the design potential. Particularly, sophisticated power electron-
ics and semiconductor detectors are in the focus of interest.

The project is based on the research results achieved at WIAS in the field of numerical semiconductor
simulations and the innovative semiconductor simulator Oskar3, which will be extended from a scientific
tool to a commercial software.
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� Zentrales Innovationsprogramm Mittelstand (ZIM): Kooperationen (Central Innovation Program for Small
and Medium-sized Entreprises: Cooperations)

Cooperative Project “Entwicklung von In-situ-Messtechnik für die Prozesskontrolle und Strukturbestim-
mung bei Plasma-Ätzprozessen” (In-situ metrology development for semiconductor processing in etch pro-
cesses), Subproject “Entwicklung eines hybriden Scattering-Matrix-Algorithmus für die indirekte Vermes-
sung von Oberflächenstrukturen bei Plasma-Ätzprozessen” (Development of hybrid scattering-matrix algo-
rithms for the metrology of surface structures in etch processes; in RG 4)

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Bonn

� Collaborative Research Center/Transregio (TRR) 154, Friedrich-Alexander-Universität Erlangen-Nürnberg
“Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken” (Mathemat-
ical Modeling, Simulation and Optimization Using the Example of Gas Networks)

This transregio research center, which has been funded by the DFG since October 2014, focuses on an effi-
cient handling of gas transportation. The Weierstrass Institute participates in the subprojects “Nichtlineare
Wahrscheinlichkeitsrestriktionen in Gastransportproblemen” (Nonlinear chance constraints in problems
of gas transportation; in RG 4) and “Parameteridentifikation, Sensorlokalisierung und Quantifizierung von
Unsicherheiten mit schaltenden Systemen von PDEs” (Parameter identification, sensor localization and
quantification of uncertainties in switched PDE systems”; in RG 8).

� Collaborative Research Center (SFB) 787, Technische Universität Berlin
“Halbleiter-Nanophotonik: Materialien, Modelle, Bauelemente” (Semiconductor Nanophotonics: Materi-
als, Models, Devices)

This collaborative research center began its work on January 1, 2008. In the third funding period (2016–
2019), WIAS participates in the subprojects B4 “Multi-dimensional modeling and simulation of electrically
pumped semiconductor-based emitters” (in RG 1 and RG 2) and B5 “Effective models, simulation and anal-
ysis of the dynamics in quantum dot devices” (in RG 2).

� Collaborative Research Center (SFB) 910, Technische Universität Berlin
“Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzep-
te” (Control of Self-organizing Nonlinear Systems: Theoretical Methods and Concepts of Application)

This center, which started in January 2011, involves groups at several institutes in Berlin, most of them
working in physics. The Subproject A5 “Pattern formation in systems with multiple scales” (in RG 1) fo-
cuses on the interaction between nonlinear effects relevant in pattern formation and the microstructures
including the periodic settings as well as localized structures. Starting from 2015, also the Subproject A3

“Activity patterns in delay-coupled systems” (in RG 2) has been treated by WIAS staff members, jointly with
TU Berlin.

� Collaborative Research Center (SFB) 1114, Freie Universität Berlin
“Skalenkaskaden in komplexen Systemen” (Scaling Cascades in Complex Systems)

The center began its work on October 1, 2014 (funding period until June 30, 2018). WIAS members partic-
ipate in the subprojects: B01 “Störungszonennetzwerke und Skaleneigenschaften von Deformationsakku-
mulation” (Fault networks and scaling properties of deformation accumulation; in RG 1), C05 “Effektive
Modelle für mikroskopisch strukturierte Trennflächen” (Effective models for interfaces with many scales;
in RG 1), and C08 “Stochastische räumliche koagulierende Partikelprozesse” (Stochastic spatial coagula-
tion particle processes; in RG 5).

� Collaborative Research Center (SFB) 1294, Universität Potsdam
“Datenassimilation: Die nahtlose Verschmelzung von Daten und Modellen” (Data Assimilation – The Seam-
less Integration of Data and Models)

This center started in July 2017 for four years. It is coordinated by Universität Potsdam together with HU
Berlin, TU Berlin, WIAS, Geoforschungszentrum Potsdam, and Universität Magdeburg. The research is fo-
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cused on the seamless integration of large data sets into sophisticated computational models. When the
computational model is based on evolutionary equations and the data set is time ordered, the process of
combining models and data is called data assimilation.

The Subproject A06 “Approximative Bayesian inference and model selection for stochastic differential
equations (SDEs)” is carried out jointly between the TU Berlin, with the focus on variational Bayesian
methods on combined state and drift estimation for SDEs, WIAS, on prior selection for semi- and non-
parametric statistics applied to SDEs, and the Universität Potsdam, on sequential Monte Carlo methods for
high-dimensional inference problems arising from SDEs.

� Priority Program SPP 1506: “Fluide Grenzflächen” (Transport Processes at Fluidic Interfaces), Technische
Universität Darmstadt and Rheinisch-Westfälische Technische Hochschule Aachen

This interdisciplinary priority program aims at a mathematically rigorous understanding of the behavior of
complex multiphase flow problems with a focus on the local processes at interfaces. WIAS participated
2017 in the subprojects “Mathematical analysis, numerical simulation of thin liquid bilayers and valida-
tion experiments” (in RG 7) and “Fully adaptive and integrated numerical methods for the simulation and
control of variable density multiphase flows governed by diffuse interface models” (in RG 8).

� Priority Program SPP 1590: “Probabilistic Structures in Evolution”, Universität Bielefeld

This interdisciplinary nationwide priority program aims at the development of new mathematical methods
for the study and understanding of an innovative evolution biology. In the prolongation of the Subproject

“Branching processes in random environment and their application to population genetics” for 2016–2018
(in RG 5), the interest was concentrated in 2017 on the description of genetics-driven biologic evolution in
complex population models with additional effects and features like seed banks.

� Priority Program SPP 1679: “Dyn-Sim-FP – Dynamische Simulation vernetzter Feststoffprozesse” (Dy-
namic Simulation of Interconnected Solids Processes), Technische Universität Hamburg-Harburg

WIAS participates in this priority program (three funding periods Oct. 2013 – Sept. 2019) with the Sub-
project “Numerische Lösungsverfahren für gekoppelte Populationsbilanzsysteme zur dynamischen Simu-
lation multivariater Feststoffprozesse am Beispiel der formselektiven Kristallisation” (Numerical methods
for coupled population balance systems for the dynamic simulation of multivariate particulate processes
using the example of shape-selective crystallization; in RG 3). The project aims at assessing and improving
numerical methods for population balance systems. The assessment of the methods is based on data from
experiments that are conducted by one of the project’s partners.

� Priority Program SPP 1748: “Zuverlässige Simulationstechniken in der Festkörpermechanik – Entwick-
lung nichtkonventioneller Diskretisierungsverfahren, mechanische und mathematische Analyse” (Reli-
able Simulation Techniques in Solid Mechanics – Development of Non-standard Discretisation Methods,
Mechanical and Mathematical Analysis), Universität Duisburg-Essen

WG 1 participated in this priority program with the Subproject “Finite-Elemente-Approximation von Funktio-
nen beschränkter Variation mit Anwendungen in der Modellierung von Schädigung, Rissen und Plastizität”
(Finite element approximation of functions of bounded variation and application to models of damage, frac-
ture, and plasticity), which is a collaboration with Universität Freiburg (duration: Oct. 2014 – Sept. 2017)
and participates now, again jointly with Universität Freiburg, from December 2017 to November 2020 in
the Subproject “Reliability of efficient approximation schemes for material discontinuities described by
functions of bounded variation”.

� Priority Program SPP 1886: “Polymorphe Unschärfemodellierungen für den numerischen Entwurf von
Strukturen” (Polymorphic Uncertainty Modelling for the Numerical Design of Structures), Technische Uni-
versität Dresden

RG 4 participates in this priority program with the subproject “Mehrskalige Versagensanalyse unter poly-
morphen Unsicherheiten für den optimalen Entwurf von Rotorblättern” (Multi-scale failure analysis with
polymorphic uncertainties for optimal design of rotor blades), which is a collaboration with Prof. Yuriy
Petryna at the TU Berlin. Main goals of the project are a possibilistic-probabilistic modeling of an adhesion
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layer described by a non-periodic random microstructure, and the numerical upscaling to a macroscopic
random representation.

� Priority Program SPP 1962: “Nichtglatte Systeme und Komplementaritätsprobleme mit verteilten Para-
metern: Simulation und mehrstufige Optimierung” (Non-smooth and Complementarity-based Distributed
Parameter Systems: Simulation and Hierarchical Optimization), Humboldt-Universität zu Berlin

The Director of WIAS, Prof. M. Hintermüller, is the coordinator of this priority program that was started in Oc-
tober 2016 with the aim to help solve some of the most challenging problems in the applied sciences that
involve nondifferentiable structures as well as partial differential operators, thus leading to nonsmooth
distributed parameter systems.

WIAS participates with the subprojects “Simulation und Steuerung eines nichtglatten Cahn-Hillard-Navier-
Stokes-Systems mit variablen Fluiddichten” (Simulation and control of a nonsmooth Cahn–Hillard Navier–
Stokes system with variable fluid densities, in RG 8), “Verallgemeinerte Nash-Gleichgewichtsprobleme mit
partiellen Differentialoperatoren: Theorie, Algorithmik und Risikoaversion” (Generalized Nash equilibrium
problems with partial differential operators: Theory, algorithms and risk aversion, in RG 8), and “Optimale
Steuerung von elliptischen und parabolischen Quasi-Variationsungleichungen” (Optimal control of elliptic
and parabolic quasi-variational inequalities, in RG 8).

� Research Unit FOR 1735 “Structural Inference in Statistics: Adaptation and Efficiency”, Humboldt-Univer-
sität zu Berlin

Complex data is often modeled using some structural assumptions. Structure adaptive methods attempt
to recover this structure from the data and to use it for estimation. RG 6 is studying the convergence and
efficiency of such algorithms (second funding period until March 2018) in the Subproject “Semiparametric
structural analysis in regression estimation”.

� Research Unit FOR 2402 “Rough Paths, Stochastic Partial Differential Equations and Related Topics”,
Technische Universität Berlin

This research unit has been funded since December 2015. One of the two spokesmen is Prof. P. Friz (RG 6).
The unit works on innovative methods for applying rough path theory to the analysis of stochastic partial
differential equations (SPDEs), like rough flow transformations, paracontrolled distributions, and regularity
structures, to push forward the understanding of the solution theory of various types of SPDEs and the
analysis of the most important physical properties of the solution processes.

The central theme in the Subproject TP 3 “Numerische Analysis von rauen partiellen Differentialgleichun-
gen” (Numerical analysis of rough PDEs; in RG 6) are numerical techniques for PDEs driven by determin-
istic or random rough paths, namely the application of semi-group theory to rough PDEs connected with
Galerkin finite element methods and Feynman–Kac representations combined with spatial regression, aim-
ing at the development of new implementable numerical methods, their error analysis, and computational
complexity.

In the Subproject TP5 “Singular SPDEs – Approximation and statistical properties” (in RG 5), two important
and prominent types of equations are studied – the Kardar–Parisi–Zhang (KPZ) equation and the (time-
dependent) parabolic Anderson equation. The main goal is the investigation of their most important long-
time properties like ageing for the KPZ equation and intermittency of the Anderson equation.

� Normalverfahren (Individual Grants)

“Entwicklung von Methoden in der Theorie selbstadjungierter Erweiterungen” (Development of methods in
the theory of self-adjoint extensions; in RG 1)

“Freie Randwertprobleme und Level-Set-Verfahren” (Free boundary problems and level-set methods; in
RG 8)

“Raue stochastische Volatilität und verwandte Themen” (Rough stochastic volatility and related topics; in
(RG 6)
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“Zufälliger Massenfluss durch zufälliges Potential” (Random mass flow through random potential; in RG 5)

� Eigene Stelle (Temporary Positions for Principal Investigators)

“Negative Frequenzen bei der Streuung von Pumpenwellen an Solitonen” (Contribution of negative frequen-
cies to scattering of dispersive waves at solitons; Dr. S. Amiranashvili)

Leibniz-Gemeinschaft (Leibniz Association), Berlin

� Leibniz-Strategiefonds (Leibniz Strategic Fund)

“Leibniz-MMS: Mathematische Modellierung und Simulation” (Leibniz MMS: Mathematical Modeling and
Simulation; July 2017 – June 2019, in Director’s office)

� Leibniz-Wettbewerb (Leibniz Competition)

“Probabilistische Methoden für Kommunikationsnetzwerke mit mobilen Relais” (Probabilistic methods for
communication networks with mobile relays; July 2014 – June 2018, in LG 4)

Einstein Stiftung Berlin (Einstein Foundation Berlin)

� Einstein-Zentrum für Mathematik Berlin (Einstein Center for Mathematics Berlin)

This center was established in 2012 as a platform for mathematical initiatives in Berlin, such as, e.g., the
Berlin Mathematical School, the German Centre for Mathematics Teacher Education (DZLM), and the MA-
THEON (see below).

In December 2016, the Director of WIAS, Prof. M. Hintermüller, was elected Chair of ECMath, Prof. A. Mielke
member of the Executive Board, and Dr. M. Liero (RG 1), Scientific Employee Representative.

Research Center MATHEON

The highlight of the collaboration with the mathematical institutions in Berlin was again the joint opera-
tion of the Research Center MATHEON “Mathematics for key technologies”. Since June 2014, the funding of
MATHEON is about 2 million euros per year through the Einstein Center for Mathematics (ECMath), which
is funded by the Einstein Foundation Berlin. In September 2016, the reviewing for the second phase was
successful, and the funding was extended until December 2018.

In 2017, WIAS again dedicated considerable financial and personal resources to the Center: Its director,
Prof. M. Hintermüller (RG 8), and deputy directors, Prof. A. Mielke (RG 1) and Prof. W. König (RG 5), were
members of MATHEON’s Executive Board; Prof. B. Wagner (RG 7), Deputy Chairperson of its Council; Prof.
D. Hömberg (RG 4), Scientist in Charge of the Application Area C “Energy and Materials”, Priv.-Doz. Dr.
U. Bandelow (RG 2), Scientist in Charge of the Application Area D “Electronic and Photonic Devices”, Priv.-
Doz. Dr. R. Henrion (RG 4), Scientist in Charge of the Application Area “Networks”, Dr. D. Peschka Scientific
Employee Representative of the Executive Board; and WIAS members participated in the successful run-
ning of the following subprojects:

until May 31, 2017:

OT1: “Mathematical modeling, analysis, and optimization of strained germanium microbridges” (in RG 1,
RG 8, and WG 1)

OT2: “Turbulence and extreme events in nonlinear optics” (in RG 2)

SE2: “Electrothermal modeling of large-area OLEDs” (in RG 1)

SE4: “Mathematical modeling, analysis and novel numerical concepts for anisotropic nanostructured ma-
terials” (in RG 7)

SE7: “Optimizing strategies in energy and storage markets” (in RG 6)

SE8: “Stochastic methods for the analysis of lithium-ion batteries” (in RG 6 and RG 7)
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SE13: “Topology optimization of wind turbines under uncertainties” (in RG 4)

since June 1, 2017:

CH11: “Sensing with nanopores” (in RG 3 and RG 7)

MI11: “Data mobility in ad-hoc networks: Vulnerability and security” (in RG 5)

OT7: “Model-based geometry reconstruction of quantum dots from TEM” (in RG 1 and RG 6)

OT8: “Modeling, analysis, and optimization of optoelectronic semiconductor devices driven by experimen-
tal data” (in WG 1)

SE17: “Stochastic methods for the analysis of lithium-ion batteries” (in RG 3, RG 6, and RG 7)

SE18: “Models for heat and charge-carrier flow in organic electronics” (in RG 1)

SE22: “Decisions in energy markets via deep learning and optimal control” (in RG 6)

Deutscher Akademischer Austauschdienst (DAAD, German Academic Exchange Service), Bonn

� Programm Projektbezogener Personenaustausch (PPP) “Emergent Dynamics in Systems of Coupled
Excitable Units” (Cooperation wit Institute of Physics Belgrade; in RG 2)

� A DAAD-IAESTE Fellowship holder (International Association for the Exchange of Students for Technical
Experience; in RG 1; see 173)

Helmholtz-Gemeinschaft (Helmholtz Association), Berlin/Bonn

� Virtual Institute: Microstructure Control for Thin-film Solar Cells

In this virtual institute, which is coordinated by the Helmholtz-Zentrum Berlin für Materialien und Energie
(HZB), the formation of structural defects and related strain during the growth of thin-film solar cells is in-
vestigated by combining experimental as well as simulation approaches. The aim is to understand and con-
trol the formation of structural defects and strain during the growth of polycrystalline silicon and
Cu(In,Ga)Se2 (CIGSe) thin films by optimized growth parameters. RG 7 participates in the project “Phase
field modeling for multi-phase systems applied to the growth of Si and Cu(In,Ga)Se2 thin films”.

Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation), Bonn

� Two Humboldt Research Fellowship holders (in RG 8); see page 173

International projects

� Participation of the head of RG 6, Prof. V. Spokoiny, in the Grant 14-5000150 of the Russian Scientific
Foundation at the Institute for Information Transmission Problems (IITP RAS) as a principal investigator and
head of the Research Group PreMoLab (http://premolab.ru/), which was created within the Mega Grant of
the Russian Government (http://www.p220.ru/en/)

� Fondation Mathématique Jacques Hadamard (FMJH): Optimisation dans l’incertain pour les problèmes de
Unit Commitment (Optimization under uncertainty for unit commitment problems; in RG 4)

Mission-oriented research (examples)

� General Electric (Switzerland) GmbH, Baden: “Prozesssimulation bei industriellen Gasturbinen” (Process
simulation for industrial gas turbines; in RG 3 and RG 6)

� Mathshop Limited, Salisbury, Wiltshire, UK: Consulting contract (in RG 5)
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� Orange Labs Research, Paris, France: “Continuum percolation theory applied to device-to-device” (in LG 4).
This one-year research project aims at a deeper understanding of device-to-device networks based on the
idea of network “überisation” using continuum percolation theory.

� TRUMPF Laser GmbH, Schramberg: Consulting contract “Introduction to the simulation of the nonlinear
dynamics of edge-emitting broad-area semiconductor lasers using the software BALaser” (in RG 2)
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A.3 Membership in Editorial Boards2

1. J. SPREKELS, Editorial Board, Mathematics and its Applications, Annals of the Academy of Romanian Scien-
tists, Academy of Romanian Scientists, Bucharest.

2. , Editorial Board, Applications of Mathematics, Institute of Mathematics, Academy of Sciences of
the Czech Republic, Prague.

3. , Editorial Board, Advances in Mathematical Sciences and Applications, Gakkōtosho, Tokyo, Japan.

4. , Editorial Board, Applied Mathematics and Optimization, Springer-Verlag, New York, USA.

5. P. FRIZ, Editorial Board, Monatshefte der Mathematik, Springer-Verlag, Berlin.

6. , Editorial Board, Stochastic Processes and Applications, Elsevier, Oxford, UK.

7. R. HENRION, Editorial Board, Journal of Optimization Theory and Applications, Springer-Verlag, Dordrecht,
Netherlands.

8. , Editorial Board, Set-Valued and Variational Analysis, Springer-Verlag, Dordrecht, Netherlands.

9. , Editorial Board, SIAM Journal on Optimization, Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania, USA.

10. , Editorial Board, Mathematical Programming, Series A, Springer-Verlag, Heidelberg.

11. , Editorial Board, Optimization — A Journal of Mathematical Programming and Operations Research,
Taylor & Francis, Abingdon, UK.

12. M. HINTERMÜLLER, Editorial Board, Interfaces and Free Boundaries, European Mathematical Society Pub-
lishing House, Zurich, Switzerland.

13. , Editorial Board, Annales Mathématiques Blaise Pascal, Laboratoire de Mathématiques CNRS-UMR
6620, Université Blaise Pascal, Clermont-Ferrand, France.

14. , Editorial Board, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, Les Ulis,
France.

15. , Editorial Board, Optimization Methods and Software, Taylor & Francis, Oxford, UK.

16. , Editorial Board, SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathe-
matics, Philadelphia, Pennsylvania, USA.

17. , Editorial Board, SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathemat-
ics, Philadelphia, Pennsylvania, USA.

18. , Series Editor, International Series of Numerical Mathematics, Springer-Verlag, Basel, Switzerland.

19. , Series Editor, Handbook of Numerical Analysis, Elsevier, Amsterdam, Netherlands.

20. D. HÖMBERG, Editorial Board, Applicationes Mathematicae, Institute of Mathematics of the Polish Academy
of Sciences (IMPAN), Warsaw.

21. , Editorial Board, Eurasian Journal of Mathematical and Computer Applications, L.N. Gumilyov
Eurasian National University, Astana, Kazakhstan.

22. W. KÖNIG, Advisory Board, Mathematische Nachrichten, WILEY-VCH Verlag, Weinheim.

23. , Area Editor, Bernoulli Journal, International Statistical Institute/Bernoulli Society for Mathematical
Statistics and Probability, The Hague, Netherlands.

24. , Series Editor, Pathways in Mathematics, Birkhäuser, Basel, Switzerland.

2Memberships in editorial boards by nonresident members have been listed in front of those by the WIAS staff members.
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25. P. MATHÉ, Editorial Board, Monte Carlo Methods and Applications, Walter de Gruyter, Berlin, New York, USA.

26. , Editorial Board, Journal of Complexity, Elsevier, Amsterdam, Netherlands.

27. A. MIELKE, Editor-in-Chief, GAMM Lecture Notes in Applied Mathematics and Mechanics, Springer-Verlag,
Heidelberg.

28. , Editorial Board, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), WILEY-VCH Verlag,
Weinheim.

29. , Editor, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Birkhäuser Verlag, Basel,
Switzerland.

30. H. NEIDHARDT, Editorial Board, Nanosystems: Physics, Chemistry, Mathematics, St. Petersburg State Uni-
versity of Information Technologies, Mechanics and Optics, Russian Federation.

31. , Editorial Board, Advances in Mathematical Physics, Hindawi Publishing Corporation, New York,
USA.

32. , Editorial Board, Journal of Operators, Hindawi Publishing Corporation, New York, USA.

33. J. POLZEHL, Editorial Board, Computational Statistics, Physica Verlag, Heidelberg.

34. , Editorial Board, Journal of Multivariate Analysis, Elsevier, Amsterdam, Netherlands.

35. M. RADZIUNAS, Editorial Board, Mathematical Modelling and Analysis, Taylor and Francis Online, London,
UK.

36. J.G.M. SCHOENMAKERS, Editorial Board, International Journal of Portfolio Analysis and Management, Inter-
science Enterprises Limited, Geneva, Switzerland.

37. , Editorial Board, Journal of Computational Finance, Incisive Media Investments Limited, London,
UK.

38. , Editorial Board, Applied Mathematical Finance, Taylor & Francis, Oxford, UK.

39. , Editorial Board, Monte Carlo Methods and Applications, Walter de Gruyter, Berlin, New York, USA.

40. V. SPOKOINY, Editor, Theory of Probability and its Applications, SIAM, Philadelphia, Pennsylvania, USA.

41. B. WAGNER, Editorial Board, Journal of Engineering Mathematics, Springer-Verlag, Dordrecht, Netherlands.

42. W. WAGNER, Editorial Board, Monte Carlo Methods and Applications, Walter de Gruyter, Berlin, New York,
USA.
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A.4 Conferences, Colloquia, and Workshops

A.4.1 WIAS Conferences, Colloquia, and Workshops

2ND LEIBNIZ MMS DAYS

Hanover, February 22–24
Organized by: WIAS, TIB Hannover
Supported by: Leibniz Association

The second Leibniz MMS Days were again an activity of the Leibniz Network “Mathematical Modeling and Sim-
ulation” (MMS) coordinated by WIAS. The President of the Leibniz Association, Prof. Kleiner, opened the work-
shop, highlighting the particular importance of state-of-the-art methods in MMS for a multiplicity of Leibniz
institutions.

The event brought together participants from varied fields from natural to social sciences. Fifty-five scientists
from 18 Leibniz institutes took part in the workshop. The goal was to further exploit the potential of modern
methods of MMS and create synergistic effects. On account of the thematic diversity, the workshop comprised
both general, plenary discussions and smaller groups that focused on specific themes.

Three keynote talks were delivered: Klaus-Robert Müller (TU Berlin) talked on “Machine learning and appli-
cations”, Stefan Turek (TU Dortmund) on “Extreme fluids – Some examples, challenges and simulation tech-
niques for flow problems with complex rheology”, and Peter Maaß (Universität Bremen) gave “An introduction
to inverse problems with applications in machine learning”.

A particular focus was also on legislation concerning research software and open access-related issues.

NONLINEAR WAVES AND TURBULENCES IN OPTICS AND HYDRODYNAMICS (NOWATOH2017)
Berlin, March 22–24
Organized by: WIAS (RG 2)
Supported by: Einstein Center for Mathematics (ECMath), WIAS

The workshop “Nonlinear Waves and Turbulences in Optics and Hydrodynamics (NOWATOH17)”, organized with
the support of the Einstein Center for Mathematics (ECMath), brought together renowned experts in the field
of nonlinear optics and hydrodynamics. The objective of this workshop was to strengthen the interdisciplinary
approach to our understanding of physical systems that exhibit heavy-tailed statistics and extreme events. In
the theoretical description of these phenomena, remarkable parallels emerged between nonlinear optics and
hydrodynamics in the recent years. While optical rogue waves induce damage to semiconductor laser diodes,
oceanic rogue waves pose a considerable risk to seafarers.

The subjects of our workshop included the theoretical modeling of rogue events with nonlinear and inte-
grable wave models, stochastic aspects related to rogue wave predictability, optical rogue waves in fibers and
laser resonators, and dissipative solitons and localized structures. The workshop featured 21 invited and con-
tributed talks presented by international speakers from eight countries and was attended by 28 participants.

7TH ANNUAL ERC BERLIN-OXFORD YOUNG RESEARCHERS MEETING ON APPLIED STOCHASTIC ANALYSIS

Berlin, May 18–20
Organized by: WIAS (RG 6), TU Berlin, Oxford University
Supported by: European Research Council, WIAS

The workshop focused on Rough Path Analysis and its rapidly growing applications in Applied Stochastic Anal-
ysis, ranging from the resolution of ill-posed stochastic partial differential equations to new ways of handling
high-dimensional data. More precisely, rough paths and related topics nowadays lead to significant progress
in the following broad variety of fields:

– Nonlinear stochastic partial differential equations
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– Regularity structures
– Expected signatures
– Stochastic Loewner Evolution
– Statistics and machine learning
– Gaussian rough path analysis
– Numerical analysis for stochastic and rough differential equations

The three-day workshop attracted around 70 participants and featured 28 invited speakers, mostly early career
researchers from Berlin, Oxford, and Warwick, on topics related to the afore-mentioned fields. The following,
eighths, Berlin-Oxford meeting took place in Oxford in the week of December 14–16, 2017.

The workshop was jointly organized by RG Stochastic Algorithms and Nonparametric Statistics (P. Friz, ERC-
funded, M. Maurelli), Technische Universität (TU) Berlin (T. Kastberg Nilssen), and Oxford University (T. Lyons,
ERC-funded; H. Boedihardjo, H. Oberhauser).

CRC 1114 SPRING SCHOOL 2017: METHODS FOR PARTICLE SYSTEMS WITH MULTIPLE SCALES

Berlin, May 29 – June 2
Organized by: CRC 1114 and WIAS (RG 1 and RG 5)
Supported by: DFG through CRC 1114, with the support of BMS

The workshop aimed at acquainting young researchers of the interdisciplinary DFG Collaborative Research Cen-
ter (CRC) 1114 Scaling Cascades in Complex Systems, who did not necessarily have a mathematical background,
with mathematical methods. It centered around three minicourses on molecular dynamics and social and
stochastic interacting particle systems, including exercise sessions. Furthermore, the minicourses were aug-
mented with contributed talks from CRC members and additional Ph.D. talks. In order to spark interaction and
active involvement, the number of participants was kept deliberately low. In total, there were 11 participants
from within the CRC, 5 from the Berlin Mathematical School (BMS), and 6 with other affiliations. A questionnaire
at the end of the workshop showed that the participants were in average very satisfied with the minicourses,
talks, and the overall format.

WORKSHOP ON MATHEMATICS OF DEEP LEARNING

Berlin, September 13 –15
Organized by: WIAS (RG 4 and RG 6), TU Berlin
Supported by: ECMath/MATHEON, FOR 1735, FOR 2402, WIAS

Deep Learning has evolved into one of the hot topics in industry and science with a wide range of applica-
tions related to the processing and interpretation of large amounts of data. The workshop with more than 60
participants was jointly organized by WIAS and the Technische Universität (TU) Berlin and supported by the
Einstein Center for Mathematics (ECMath) / Research Center MATHEON as well as the Research Units FOR 1735
Structural Inference in Statistics: Adaptation and Efficiency and FOR 2402 Rough Paths, Stochastic Partial Dif-
ferential Equations and Related Topics. The event gathered experts from different disciplines to present and
discuss approaches towards a mathematically rigorous understanding of deep learning architectures and their
applications.

HOMOGENIZATION THEORY AND APPLICATIONS (HOMTAP)
Berlin, October 4–6
Organized by: WIAS (RG 1 and RG 3) and TU Dortmund
Supported by: DFG CRC 910 and 1114, WIAS

The first HomTAp workshop was supported by the Collaborative Research Centers (CRC) 910 Control of Self-
organizing Nonlinear Systems: Theoretical Methods and Concepts of Application, and 1114 Scaling Cascades
in Complex Systems and WIAS. The workshop focused on periodic, stochastic, and numerical methods for ho-
mogenization of multiscale problems. The aim of the workshop was to bring together researchers from analysis,
numerics, and scientific computing and to give them the opportunity to exchange experience in the field of ho-
mogenization.
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The program featured 9 invited talks, 23 contributed talks, and 12 posters. In total, 64 scientists participated
in the workshop. There has been a very high demand among national and international scientists to participate
in this workshop such that the organizers were forced to close the online registration early. Therefore, due to
limited capacities of the Erhard Schmidt lecture room, several interested researchers had, unfortunately, to be
rejected. For the second time, a live stream was established such that WIAS colleagues had the opportunity to
follow the talks on their computers.

Fig. 1: The participants of
the Workshop on
Homogenization Theory and
Applications

SPP 1962 ANNUAL MEETING

Kremmen, October 9–11
Organized by: WIAS (RG 8), HU Berlin
Supported by: DFG SPP 1962

The Annual Meeting of the DFG Priority Programme (SPP) 1962 Non-smooth and Complementarity-based Dis-
tributed Parameter Systems: Simulation and Hierarchical Optimization coordinated by the WIAS Director, Prof.
Dr. Michael Hintermüller, took place from October 9 to 11 in Kremmen near Berlin. A total of 69 participants
attended the annual meeting of whom 64 were from outside WIAS. Each of the 23 scientific projects in the SPP
was represented by a talk of 25 minutes where a presentation of results obtained or a concrete plan for future
work was given. Four of the attendees — Radu Bot (Universität Wien), Martin Brokate (Technische Universität
München), Jǐrí Outrata (Czech Academy of Sciences), and Sven Leyffer (Argonne National Laboratory) — were
plenary speakers specially chosen for the annual meeting, and each plenary speaker gave a talk of 45 minutes.

In addition, a meeting for principal investigators also took place on October 10 where important matters re-
lated to the upkeep and continual improvement of SPP issues were discussed. Concurrently, also a Young
Researchers’ Meeting took place, which helped to identify an organizational team (outside WIAS) who will be
responsible for running a Young Researchers’ event for the younger SPP members in 2018.

In summary, the meeting was well attended and opinions of the venue and format were generally quite favor-
able.

AUTUMN SCHOOL ON NONSMOOTH STRUCTURES IN MATHEMATICAL MODELS 2017
Berlin, October 11–14
Organized by: WIAS (RG 8)
Supported by: DFG SPP 1962

A number of complex problems in the applied and physical sciences involve non-differentiable structures that
lead to non-smooth systems and models. Some examples of these include models describing frictional contact
problems, magnetization of superconductors, and optimal system design in biomechanics and robotics; these
are all highly nonlinear and nonsmooth, and represent novel mathematical structures. Analytical, algorithmical
and numerical obstacles need to be overcome to fully study these problems.
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The aim of this autumn school was to present formulations of models, their rigorous analysis and resulting
numerical analysis in a series of lectures held by Radu Bot (Universität Wien), Martin Brokate (Technische
Universität München), and Jǐrí Outrata (Czech Academy of Sciences).

The autumn school took place directly after the SPP 1962 Annual Meeting in order to facilitate ease of at-
tendance for the doctoral and postdoctoral students of the SPP, however the school was also open for other
interested persons.

Twenty-six participants from outside WIAS took part in the school. A social dinner on Thursday evening was
organized at a local restaurant in Berlin.

COLLOQUIUM IN MATHEMATICAL STATISTICS

Berlin, November 22
Organized by: WIAS (RG 6)
Supported by: DFG CRC 1294, FOR 1735, IRTG 1792, WIAS

The aim of this international workshop was to discuss recent results on modern mathematical statistics on the
occasion of 50 years of the Seminar of Mathematical Statistics in Berlin. The lectures focused particularly on
statistical problems arising in quantum tomography, econometrics, adaptive density estimation, and others.
The program featured six invited lectures of high-calibre scientists from renowned universities.

The conference was supported by the DFG Collaborative Research Center(CRC) 1294 Data Assimilation, the DFG
Research Unit FOR 1735 Structural Inference in Statistics: Adaptation and Efficiency, the International Research
Training Group IRTG 1792 High Dimensional Non Stationary Time Series, and WIAS. It was attended by 58
participants, mainly from Germany and France as well as from Sweden, Singapore, Denmark, and the United
States.

CIM-WIAS WORKSHOP “TOPICS IN APPLIED ANALYSIS AND OPTIMISATION ( STOCHASTIC, PARTIAL DIFFERENTIAL EQUA-
TIONS AND NUMERICAL ANALYSIS)”
Lisbon, December 6–8
Organized by: CIM, University of Lisbon, CMAF-CIO, CMUC, WIAS
Supported by: Portuguese Foundation for Science and Technology FCT, WIAS

This workshop was organized with the aim of inciting scientific activities among member institutions of the Eu-
ropean Research Centres on Mathematics (ERCOM). In Lisbon, current scientific interests of the research groups
of the Weierstrass Institute and mathematics centres in Portugal were presented and discussed. This joint
workshop of the Portugese Centro Internacional de Matemática (CIM) and WIAS brought together a selection of
experts in Europe in order to launch and strengthen further collaborations. Topics of interest included partial
differential equations with applications to material sciences, thermodynamics, and laser dynamics, scientific
computing, nonlinear optimization, and stochastic analysis. The workshop was organized and supported by
the Department of Mathematics of the University of Lisbon, the Centre for Mathematics of the University of
Coimbra (CMUC), and WIAS. Twenty-four talks were presented to thirty-eight participants.

DYNAMICS OF NOVEL MODE-LOCKED AND FREQUENCY-SWEPT LASERS (DNMFL2017)
Berlin, December 18–19
Organized by: WIAS (RG 2)

This international minisymposium was focused on the discussion of novel technological trends and modeling
approaches in optoelectronics. The aim of the two-day minisymposium was to bring together applied math-
ematicians and physicists in order to provide them an opportunity to exchange knowledge and latest devel-
opments with their colleagues and young scientists by presenting their recent theoretical and experimental
results in the field of nonlinear dynamics of frequency-swept and mode-locked lasers. The subjects of the work-
shop included the experimental and theoretical investigation of the dynamics of frequency-swept lasers used
in optical coherence tomography, the transition to optical turbulence in long-cavity laser systems, the modeling
of Fourier domain mode-locked lasers, the application of delay-differential equation models in laser dynamics,
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the reduction of laser models using dynamical systems theory, bifurcation theory and singular perturbation
theory, numerical methods for the simulation of mode-locked and frequency-swept lasers, the investigation of
temporal cavity solitons and light bullets in broad-area mode-locked lasers.

The program featured nine invited and contributed talks presented by speakers from four countries, and was
attended by 17 registered participants.

A.4.2 Non-WIAS Conferences, Colloquia, and Workshops co-organized and co-funded by
WIAS and/or having taken place at WIAS

BMS SUMMER SCHOOL “PROBABILISTIC AND STATISTICAL METHODS FOR NETWORKS”
Berlin, August 21 – September 1
Organized by: BMS, EPSRC at the University of Bath, WIAS (RG 5)

The annual BMS Summer School 2017 (more precisely, one of the two in this year) was devoted to a very timely
topic that plays an increasingly important role in the research of RG 5: networks in various applications having
important connections with randomness in any sense. Eight speakers talked about more or less theoretical or
applied aspects of networks for various kinds of applications, like neuroscience, traffic, and telecommunica-
tion, statistical inference, or information science. Two WIAS members were among the speakers (from RG 5 and
RG 6) and introduced the audience to probabilistic spatial models for wireless communication and to statistic
network modeling for the analysis of learning processes in brains, respectively.

The school was jointly organized by the Engineering and Physical Sciences Research Council (EPSRC) Centre for
Doctoral Training in Statistical Applied Mathematics (SAMBa) at the University of Bath and the Berlin Mathe-
matical School (BMS). The speakers were jointly appointed. About 60 young scientists, ten of which from Bath
and the rest mainly from Germany, but also from all over the world, were selected for participation after the ap-
plication process. In the ten morning sessions of the school, 20 challenging lectures were delivered, and in the
afternoons, several exercise sessions were offered by young instructors. Additional research talks by scientists
from Berlin and Bath, as well as contributed talks by the young participants were given as well.

A.4.3 Oberwolfach Workshops co-organized by WIAS

WORKSHOP “MATHEMATICS OF QUANTITATIVE FINANCE”
Mathematisches Forschungsinstitut Oberwolfach, February 26 – March 4
Organized by: Antoine Jacquier (Imperial College, London), Josef Teichmann (ETH Zurich), Peter Friz (TU Berlin
and RG 6)

The workshop focused on cutting-edge areas of mathematical finance, with an emphasis on the applicability
of the new techniques and models presented by the participants.

Over 50 invited participants attended the workshop. These scientists came from a diverse set of countries, and
young mathematicians were especially well-represented among them. Fundamental topics of modern mathe-
matical finance, such as rough volatility, nonlinear partial differential equation methods, and model-free fi-
nance were investigated in detail in the 42 talks. Citing the concluding report: “[...] 20 years after settling the
fundamental theorems [of mathematical finance, due to Delbaen–Schachermayer], the field is sparkling with
new ideas from all directions of applied mathematics and beyond.”

WORKSHOP “VARIATIONAL METHODS FOR EVOLUTION”
Mathematisches Forschungsinstitut Oberwolfach, November 12–18
Organized by: Alexander Mielke (RG 1), Mark Peletier (TU Eindhoven), Dejan Slepcev (Carnegie Mellon Univer-
sity Pittsburgh)
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About 50 mathematicians from calculus of variations, partial differential equations, metric geometry, and sto-
chastics, as well as applied and computational scientists discussed a variety of topics and exchanged ideas,
thereby continuing two earlier meetings (in 2011 and 2014) at the Mathematical Research Institute in Oberwol-
fach.

The workshop focused on variational tools such as incremental minimization approximations, Gamma conver-
gence, optimal transport, gradient flows, and large-deviation principles for time-continuous Markov processes.
Relevant applications that arise in mechanics of fluids and solids, in reaction-diffusion systems, and in many-
particle models were discussed, too.

From WIAS, eight participants took part in the workshop. The photo by Petra Lein (Copyright MFO) shows the
organizers.

Fig. 2: The organizers of the Oberwolfach
Workshop “Variational Methods for
Evolution”
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A.5 Membership in Organizing Committees of non-WIAS

Meetings
1. N. AHMED, member of the Organizing Committee, CASM International Conference on Applied Mathemat-

ics, Lahore University of Management Sciences, Centre for Advanced Studies in Mathematics, Pakistan,
May 22–24.

2. M. EIGEL, co-organizer of the Section S15 “Uncertainty Quantification”, 88th Annual Meeting of the
International Association of Applied Mathematics and Mechanics (GAMM 2017), Bauhaus Universität
Weimar/Technische Universität Ilmenau, Weimar, March 6–10.

3. , co-organizer of the Minisymposium “Uncertainty Computations with Reduced Order Models and
Low-Rank Representations”, 2nd International Conference on Uncertainty Quantification in Computational
Sciences and Engineering (UNCECOMP 2017), Rhodos, Greece, June 15–17.

4. P. FRIZ, organizer, Workshop “Mathematics of Quantitative Finance”, Mathematisches Forschungsinstitut
Oberwolfach, February 26 – March 4.

5. , co-organizer of the Section S13 “Probability Theory”, 19th International Congress of the ÖMG
and Annual DMV Meeting, Austrian Mathematical Society (ÖMG) and Deutsche Mathematiker-Vereinigung
(DMV), Paris-Lodron University of Salzburg, Austria, September 11–15.

6. , member of the Scientific Committee, Quantitative Finance Conference in honour of Jim Gatheral’s
60th Birthday, New York University, Courant Institute, USA, October 13–15.

7. , scientific organizer, Berlin-Leipzig Workshop in Analysis and Stochastics, Max-Planck-Institut für
Mathematik in den Naturwissenschaften, Leipzig, November 29 – December 1.

8. , member of the Scientific Board, 8th Oxford-Berlin Young Researchers Meeting on Applied Stochas-
tic Analysis, University of Oxford, Mathematical Institute, UK, December 14–16.

9. J. FUHRMANN, A. LINKE, members of the Organizing Committee, 8th International Symposium on Finite Vol-
umes for Complex Applications (FVCA 8), Université Lille 1, Villeneuve d’Ascq, France, June 12–16.

10. M. HINTERMÜLLER, co-organizer of the Minisymposium MS 111 “Optimization with Balance Laws on
Graphs”, SIAM Conference on Optimization, Vancouver, British Columbia, Canada, May 22–25.

11. , co-organizer of the Minisymposium MS 122 “Recent Trends in PDE-Constrained Optimization”,
SIAM Conference on Optimization, Vancouver, British Columbia, Canada, May 22–25.

12. , co-organizer of the Theme Session 8 “Optimization and Control of Interfaces”, 14th International
Conference on Free Boundary Problems: Theory and Applications, Shanghai Jiao Tong University, China,
July 9–14.

13. , co-organizer, Programme “Variational Methods and Effective Algorithms for Imaging and Vision”
including the Workshop “Generative Models, Parameter Learning and Sparsity” (Oct. 30 – Nov. 3, 2017)
and the Satellite Workshop “MiR@W Day: Image Analysis and Processing in the Life Sciences” (Oct. 2–3,
2017), Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, August 29 – December 20.

14. , co-organizer of the Section S10 “Numerical Analysis”, 19th ÖMG Congress and Annual DMV Meet-
ing, Austrian Mathematical Society (ÖMG) and Deutsche Mathematiker-Vereinigung (DMV), Paris-Lodron
University of Salzburg, Austria, September 11–15.

15. , co-chair of the Organizing Committee, 4th Conference on Optimization Methods and Software, Ha-
vana, Cuba, December 16–20.

16. M. HINTERMÜLLER, V. JOHN, members of the Scientific Board, 2nd Leibniz MMS Days 2017, German National
Library of Science (TIB), Hannover, February 22–24.
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17. M. HINTERMÜLLER, W. KÖNIG, A. MIELKE, members of the Scientific Organizing Committee, CIM-WIAS Work-
shop “Topics in Applied Analysis and Optimisation”, International Center for Mathematics, University of
Lisbon, Portugal, December 6–8.

18. V. JOHN, member of the Scientific Committee, 12th International Workshop on Variational Multiscale and
Stabilization Methods (VMS-2017), Campus Reina Mercedes, Sevilla, Spain, April 26–28.

19. W. KÖNIG, organizer, Summer School 2017: Probabilistic and Statistical Methods for Networks, Technische
Universität Berlin, Berlin Mathematical School, August 21 – September 1.

20. TH. KOPRUCKI, member of the Program Committee, 10th Conference on Intelligent Computer Mathematics
(CICM 2017), University of Edinburgh, UK, July 17–21.

21. , member of the Steering Committee, 17th International Conference on Numerical Simulation of Op-
toelectronic Devices (NUSOD17), Technical University of Denmark, Copenhagen, July 23–28.

22. A. MIELKE, member of the Scientific Committee and co-organizer of the Minisymposium “Deformation Ac-
cumulation in Seismic Faults and Networks”, CRC 1114 Conference “Scaling Cascades in Complex Systems
2017”, Freie Universität Berlin, March 27–29.

23. A. MIELKE, S. REICHELT, organizers, SFB 910 Symposium “Stability versus Oscillations in Complex Systems”,
Technische Universität Berlin, Institut für Theoretische Physik, February 10.

24. O. OMEL’CHENKO, co-organizer of the Minisymposium 14a “Synchronization Patterns In Networks: Theory
And Applications”, XXXVII Dynamics Days Europe, University of Szeged, Faculty of Science and Informatics,
Hungary, June 5–9.

25. M. RADZIUNAS, member of the International Scientific Committee, 22nd International Conference „Mathe-
matical Modelling and Analysis”, European Consortium for Mathematics in Industry (ECMI) and Vilnius
Gediminas Technical University, Druskininkai, Lithuania, May 30 – June 2.

26. V. SPOKOINY, organizer, Spring School “Structural Inference” 2017, DFG Research Unit FOR 1735 “Struc-
tural Inference in Statistics: Adaptation and Efficiency”, Bad Malente, March 5–10.

27. , chair of the Local Organizing Commitee, The 39th Conference on Stochastic Processes and their
Applications (SPA2017), Russian Academy of Sciences, Kharkevich Institute of Information Transmissions
Problems, Moscow, July 24–28.

28. M. THOMAS, co-organizer of the Section S14 “Applied Analysis”, 88th Annual Meeting of the In-
ternational Association of Applied Mathematics and Mechanics (GAMM 2017), Bauhaus Universität
Weimar/Technische Universität Ilmenau, Weimar, March 6–10.
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A.6 Publications3

A.6.1 Monographs (to appear)

[1] B. BŁASZCZYSZYN, M. HAENGGI, P. KEELER, S. MUKHERJEE, Stochastic Geometry Analysis of Cellular Networks,
Cambridge University Press, Cambridge.

A.6.2 Editorship of Proceedings and Collected Editions

[1] P. COLLI, A. FAVINI, E. ROCCA, G. SCHIMPERNA, J. SPREKELS, eds., Solvability, Regularity, and Optimal Control
of Boundary Value Problems for PDEs: In Honour of Prof. Gianni Gilardi, vol. 22 of Springer INdAM Series,
Springer International Publishing AG, Cham, 2017, xii+571 pages.

[2] F.J. ARAGÓN ARTACHO, R. HENRION, M.A. LÓPEZ-CERDÁ, C. SAGASTIZÁBAL, J.M. BORWEIN, eds., Special Issue:
Advances in Monotone Operators Theory and Optimization, vol. 25, issues 3 and 4, of Set-Valued and Vari-
ational Analysis, Springer International Publishing AG, Cham, 2017, 396 pages.

[3] L. GHEZZI, D. HÖMBERG, CH. LANDRY, eds., Math for the Digital Factory, vol. 27 of Mathematics in Industry /
The European Consortium for Mathematics in Industry, Springer International Publishing AG, Cham, 2017,
x+348 pages.

[4] H.-CHR. KAISER, D. KNEES, A. MIELKE, J. REHBERG, E. ROCCA, M. THOMAS, E. VALDINOCI, eds., PDE 2015:
Theory and Applications of Partial Differential Equations, vol. 10 of Discrete and Continuous Dynamical
Systems – Series S, no. 4, American Institute of Mathematical Science, Springfield, 2017, iv+933 pages.

A.6.3 Outstanding Contributions to Monographs

[1] P. FARRELL, N. ROTUNDO, D.H. DOAN, M. KANTNER, J. FUHRMANN, TH. KOPRUCKI, Chapter 50: Drift-Diffusion
Models, in: Vol. 2 of Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators,
Photodetectors, Solar Cells, and Numerical Methods, J. Piprek, ed., Series in Optics and Optoelectronics,
CRC Press, Taylor & Francis Group, Boca Raton, 2017, pp. 733–771.

[2] M. HINTERMÜLLER, D. WEGNER, Distributed and Boundary Control Problems for the Semidiscrete Cahn–
Hilliard/Navier–Stokes System with Nonsmooth Ginzburg–Landau Energies, in: Topological Optimization
and Optimal Transport in the Applied Sciences, M. Bergounioux, E. Oudet, M. Rumpf, G. Carlier, Th. Cham-
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tudinal welded tubes during high-frequency induction (HFI) welding, in: Heat Treat 2017: Proceedings of
the 29th AMS Heat Treating Society Conference, October 24–26, 2017, Columbus, Ohio, USA, ASM Inter-
national, Materials Park, Ohio, 2017, pp. 534–538.
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coupling of inhomogeneous current spreading and electro-optical models for simulation of dynamics in
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A.7 Preprints, Reports
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[1] P. COLLI, G. GILARDI, J. SPREKELS, Limiting problems for a nonstandard viscous Cahn–Hilliard system with
dynamic boundary conditions, Preprint no. 2369, WIAS, Berlin, 2017.
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4Preprints that have been written by nonresident members and scholarship holders during their stay at WIAS have been listed
in front of those written by the WIAS staff members.
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[30] M. BECKER, TH. FRENZEL, TH. NIEDERMEYER, S. REICHELT, A. MIELKE, M. BÄR, Local control of globally
competing patterns in coupled Swift–Hohenberg equations, Preprint no. 2457, WIAS, Berlin, 2017.
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[96] ST. MUIRHEAD, R. PYMAR, R. SOARES DOS SANTOS, The Bouchaud–Anderson model with double-
exponential potential, Preprint no. 2433, WIAS, Berlin, 2017.

[97] M. THOMAS, A comparison of delamination models: Modeling, properties, and applications, Preprint no.
2393, WIAS, Berlin, 2017.

[98] M. THOMAS, C. BILGEN, K. WEINBERG, Analysis and simulations for a phase-field fracture model at finite
strains based on modified invariants, Preprint no. 2456, WIAS, Berlin, 2017.

[99] S. BARTELS, M. MILICEVIC, M. THOMAS, Numerical approach to a model for quasistatic damage with spa-
tial BV -regularization, Preprint no. 2388, WIAS, Berlin, 2017.
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[100] R. ROSSI, M. THOMAS, From nonlinear to linear elasticity in a coupled rate-dependent/independent sys-
tem for brittle delamination, Preprint no. 2409, WIAS, Berlin, 2017.

[101] R. KRAAIJ, F. REDIG, W. VAN ZUIJLEN, A Hamilton–Jacobi point of view on mean-field Gibbs-non-Gibbs
transitions, Preprint no. 2461, WIAS, Berlin, 2017.

[102] G. KITAVTSEV, A. MÜNCH, B. WAGNER, Thin film models for an active gel, Preprint no. 2451, WIAS, Berlin,
2017.

[103] O. MUSCATO, W. WAGNER, A stochastic algorithm without time discretization error for the Wigner equation,
Preprint no. 2415, WIAS, Berlin, 2017.

[104] V. KLINSHOV, D. SHCHAPIN, S. YANCHUK, M. WOLFRUM, O. D’HUYS, V. NEKORKIN, Embedding the dynamics
of a single delay system into a feed-forward ring, Preprint no. 2429, WIAS, Berlin, 2017.

A.7.2 WIAS Reports Series

[1] H.-J. MUCHA, Big data clustering: Data preprocessing, variable selection, and dimension reduction, WIAS
Report no. 29, WIAS, Berlin, 2017.

A.7.3 Preprints/Reports in other Institutions

[1] L. ANDREIS, A. ASSELAH, P. DAI PRA, Ergodicity of a system of interacting random walks with asymmetric
interaction, arXiv:1702.02754, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[2] L. ANDREIS, P. DAI PRA, M. FISCHER, McKean–Vlasov limit for interacting systems with simultaneous jumps,
arXiv:1704.01052, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[3] L. ANDREIS, F. POLITO, L. SACERDOTE, On a class of time-fractional continuous-state branching processes,
arXiv:1702.03188, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[4] L. ANDREIS, D. TOVAZZI, Coexistence of stable limit cycles in a generalized Curie–Weiss model with dissipa-
tion, arXiv:1711.05129, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[5] CH. BAYER, P. FRIZ, P. GASSIAT, J. MARTIN, B. STEMPER, A regularity structure for rough volatility,
arXiv:1710.07481, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[6] N. BUZUN, V. AVANESOV, Bootstrap for change point detection, arXiv:1710.07285, Cornell University Li-
brary, arXiv.org, Ithaca, USA, 2017.

[7] J. BLATH, E. BUZZONI, A. CASANOVA SOBERÓN, M.W. BERENGUER, The seed bank diffusion, and its relation to
the two-island model, arXiv:1710.08164, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[8] P. DVURECHENSKY, Gradient method with inexact oracle for composite non-convex optimization,
arXiv:1703.09180, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[9] A. BAYANDINA, P. DVURECHENSKY, A. GASNIKOV, F. STONYAKIN, A. TITOV, Mirror descent and convex opti-
mization problems with non-smooth inequality constraints, arXiv:1710.06612, Cornell University Library,
arXiv.org, Ithaca, USA, 2017.

[10] P. DVURECHENSKY, A. GASNIKOV, A. LAGUNOVSKAYA, Parallel algorithms and probability of large deviation
for stochastic optimization problems, arXiv:1701.01830, Cornell University Library, arXiv.org, Ithaca, USA,
2017.

[11] P. DVURECHENSKY, A. GASNIKOV, A. TIURIN, Randomized similar triangles method: A unifying framework
for accelerated randomized optimization methods (coordinate descent, directional search, derivative-free
method), arXiv:1707.08486, Cornell University Library, arXiv.org, Ithaca, USA, 2017.
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[12] P. DVURECHENSKY, S. OMELCHENKO, A. TIURIN, Adaptive similar triangles method: A stable alternative
to Sinkhorn’s algorithm for regularized optimal transport, arXiv:1706.07622, Cornell University Library,
arXiv.org, Ithaca, USA, 2017.

[13] J. FUHRMANN, K.S. SCHELIGA, H. PAMPEL, H. BERNSTEIN, B. FRITZSCH, ET AL., Helmholtz Open Sci-
ence Workshop “Zugang zu und Nachnutzung von wissenschaftlicher Software”, Report, Deutsches Ge-
oForschungsZentrum GFZ, Potsdam, 2017.

[14] A. GONZÁLEZ CASANOVA SOBERÓN, J.C. PARDO, J.L. PEREZ, Branching processes with interactions: The sub-
critical cooperative regime, arXiv:1704.04203, Cornell University Library, arXiv.org, Ithaka, USA, 2017.

[15] M. HINTERMÜLLER, N. STROGIES, On the identification of the friction coefficient in a semilinear system
for gas transport through a network, Preprint, DFG SFB Transregio 154 “Mathematical Modelling, Simu-
lation and Optimization using the Example of Gas Networks”, Friedrich-Alexander-Universität Erlangen-
Nürnberg, 2017.

[16] P. MATHÉ, B. HOFMANN, Tikhonov regularization with oversmoothing penalty for non-linear ill-posed prob-
lems in Hilbert scales, arXiv:1705.03289, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[17] L.T. DING, P. MATHÉ, Minimax rates for statistical inverse problems under general source conditions,
arXiv:1707.01706, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[18] B. GESS, M. MAURELLI, Well-posedness by noise for scalar conservation laws, arXiv:1701.05393, Cornell
University Library, arXiv.org, Ithaca, 2017.

[19] D.R.M. RENGER, P. KOLTAI, From large deviations to transport semidistances: Coherence analysis for finite
Lagrangian data, arXiv:1709.02352, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[20] F. GÖTZE, A. NAUMOV, V. SPOKOINY, V. ULYANOV, Gaussian comparison and anti-concentration inequalities
for norms of Gaussian random elements, arXiv:1708.08663, Cornell University Library, arXiv.org, Ithaca,
USA, 2017.

[21] A. NAUMOV, V. SPOKOINY, V. ULYANOV, Bootstrap confidence sets for spectral projectors of sample covari-
ance, arXiv:1703.00871, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[22] I. SILIN, V. SPOKOINY, Bayesian inference for spectral projectors of covariance matrix, arXiv:1711.11532,
Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[23] J. EBERT, V. SPOKOINY, A. SUVORIKOVA, Construction of non-asymptotic confidence sets in 2-Wasserstein
space, arXiv:1703.03658, Cornell University Library, arXiv.org, Ithaca, USA, 2017.

[24] A.G. VLADIMIROV, S.V. GUREVICH, M. TLIDI, Effect of Cherenkov radiation on localized states interaction,
arXiv:1707.04458, Cornell University Library, arXiv.org, Ithaca, USA, 2017.
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A.8 Talks and Posters

A.8.1 Main and Plenary Talks

1. P. FRIZ, Aspects of rough volatility, The 5th Imperial – ETH Workshop on Mathematical Finance, March 27–
29, Imperial College London, UK, March 27.

2. R. HENRION, Probabilistic constraints: Convexity issues and beyond, XII International Symposium on Gener-
alized Convexity and Monotonicity, August 27 – September 2, Hajdúszoboszló, Hungary, August 29.

3. , A friendly tour through the world of calmness, 11th International Conference on Parametric Opti-
mization and Related Topics (ParaoptXI), September 19–22, Prague, Czech Republic, September 19.

4. , Comparing and verifying calmness conditions for MPECs, Second Workshop on Metric Bounds and
Transversality (WoMBaT 2017), November 30 – December 2, RMIT University, Melbourne, Australia, Novem-
ber 30.

5. M. HINTERMÜLLER, Recent trends in PDE-constrained optimization with non-smooth structures, Fourth Con-
ference on Numerical Analysis and Optimization (NAOIV-2017), January 2–5, Sultan Qaboos University,
Muscat, Oman, January 4.

6. D. HÖMBERG, European collaboration in industrial and applied mathematics, 25th Conference on Applied
and Industrial Mathematics (CAIM), September 14–17, University of Iaşi, Romania, September 14.

7. , MSO for steel production and manufacturing, Workshop “Future and Emerging Mathematical Tech-
nologies in Europe”, December 11–15, Lorentz Center, Leiden, Netherlands, December 11.

8. A. MIELKE, Optimal transport versus growth and decay, International Conference “Calculus of Variations
and Optimal Transportation” in the Honor of Yann Brenier for his 60th Birthday, January 9–11, Institut
Henri Poincaré, Paris, France, January 11.

9. V. SPOKOINY, Adaptive clustering and network clustering, 60th MIPT Scientific Conference, Moscow State
University, Moscow Institute of Physics and Technology, Russian Federation, November 25.

10. B. WAGNER, Mathematical opportunities and challenges in sustainable energies, SIAM Annual Meeting,
July 10–14, Pittsburgh, USA, July 14.

A.8.2 Scientific Talks (Invited)

1. J. SPREKELS, A nonstandard viscous Cahn–Hilliard system with dynamic boundary condition and the DCH,
Analysis of Boundary Value Problems for PDEs – Workshop on the Occasion of the 70th Birthday of Gianni
Gilardi, Pavia, Italy, February 20.

2. , Well-posedness and optimal control of a nonstandard Cahn–Hilliard system with dynamic bound-
ary condition, Fudan University, School of Mathematical Sciences, China, April 10.

3. , Optimal control of PDEs: From basic principles to hard applications, 3 talks, International School
“Frontiers in Partial Differential Equations and Solvers”, May 22–25, University of Pavia, Department of
Mathematics, Italy, May 25.

4. H. SUN, Locating and determining shapes of multiple scatterers with finite electromagnetic point sources,
Applied Inverse Problems 2017, Minisymposium M47-2 “Visibility and Invisibility for Wave Scattering”,
May 29 – June 2, Hangzhou, China, May 30.

5. N. AHMED, Higher-order discontinuous Galerkin time discretizations for the evolutionary Navier–Stokes
equations, Technische Universität Dresden, Institut für Numerische Mathematik, March 9.
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6. , On really locking-free mixed finite element methods for the transient incompressible Stokes equa-
tions, CASM International Conference on Applied Mathematics, May 22–24, Lahore University of Manage-
ment Sciences, Centre for Advanced Studies in Mathematics, Pakistan, May 22.

7. , A numerical study of residual based variational multiscale methods for turbulent incompressible
flow problems, American University of the Middle East, Dasman, Kuwait, November 2.

8. A. ALPHONSE, A coupled bulk-surface reaction-diffusion system on a moving domain, Workshop “Emerg-
ing Developments in Interfaces and Free Boundaries”, January 23–28, Mathematisches Forschungszen-
trum Oberwolfach, January 25.

9. C. BARTSCH, ParMooN – A parallel finite element solver, Part I, Indian Institute of Science, Supercomputer
Education and Research Centre, Bangalore, India, March 16.

10. CH. BAYER, Smoothing the payoff for efficient computation of basket option prices, Workshop “Mathemat-
ics of Quantitative Finance”, February 26 – March 4, Mathematisches Forschungsinstitut Oberwolfach,
February 27.

11. , Smoothing the payoff for efficient computation of basket options, Workshop on Recent Devel-
opments in Numerical Methods with Applications in Statistics and Finance, June 8–9, University of
Mannheim, Graduate School of Economics and Social Sciences, June 9.

12. , Numerics for rough volatility models, Ninth Workshop on Random Dynamical Systems, June 14–
17, University of Bielefeld, Department of Mathematics, June 14.

13. , Smoothing the payoff for efficient computation of basket options, Conference on Mathematical
Modelling in Finance 2017, August 30 – September 2, Imperial College London, UK, September 2.

14. , Rough volatility models in finance, 19th International Congress of the ÖMG and Annual DMV
Meeting, 6th Austrian Stochastics Days, September 11–15, Austrian Mathematical Society (ÖMG) and
Deutsche Mathematiker-Vereinigung (DMV), Paris-Lodron University of Salzburg, Austria, September 13.

15. , Smoothing the payoff for efficient computation of basket option, Financial Math Seminar, Prince-
ton University, Operations Research & Financial Engineering, USA, October 11.

16. , A regularity structure for rough volatility, Quantitative Finance Conference in honour of Jim
Gatheral’s 60th Birthday, October 13–15, New York University, Courant Institute, USA, October 14.

17. , Rough volatility models in finance, AMCS Seminar, King Abdullah University of Science and Tech-
nology (KAUST), Computer, Electrical and Mathematical Sciences & Engineering Division, Thuwal, Saudi
Arabia, October 25.

18. C. BRÉE, Detection of dynamic resonances in femtosecond filaments via the transient plasma grating ef-
fect, Workshop „Nonlinear Phenomena in Strong Fields”, Leibniz Universität Hannover, January 25.

19. A. CAIAZZO, Homogenization methods for weakly compressible elastic materials forward and inverse prob-
lem, Workshop on Numerical Inverse and Stochastic Homogenization, February 13–17, Universität Bonn,
Hausdorff Research Institute for Mathematics, February 17.

20. R. DOS SANTOS, Mass concentration in the parabolic Anderson model, Université Claude Bernard Lyon 1,
Institut Camille Jordan, France, February 2.

21. W. DREYER, Space-time transformations and the principle of material objectivity, 2 talks, Technische Uni-
versität Darmstadt, Fachbereich Mathematik, May 3–5.

22. P.-É. DRUET, Existence of weak solutions for improved Nernst–Planck–Poisson models of compressible
electrolytes, Seminar EDE, Czech Academy of Sciences, Institute of Mathematics, Department of Evolution
Differential Equations (EDE), Prague, Czech Republic, January 10.

23. M. EIGEL, Adaptive stochastic FE for explicit Bayesian inversion with hierarchical tensor representations,
Institut National de Recherche en Informatique et en Automatique (INRIA), SERENA (Simulation for the
Environment: Reliable and Efficient Numerical Algorithms) research team, Paris, France, June 1.
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24. , Explicit Bayesian inversion in hierarchical tensor representations, 4th GAMM Junior’s and 1st
GRK2075 Summer School 2017 “Bayesian Inference: Probabilistic Way of Learning from Data”, July 10–
14, Braunschweig, July 14.

25. , Aspects of stochastic Galerkin FEM, Universität Basel, Mathematisches Institut, Switzerland,
November 10.

26. S. EYDAM, Phase oscillator mode-locking, Forschungsseminar “Applied Dynamical Systems”, TU Berlin,
June 14.

27. P. FARRELL, Numerical solution of PDEs via RBFs and FVM with focus on semiconductor problems, Techni-
sche Universität Hamburg, Institut für Mathematik, Harburg, January 6.

28. F. FLEGEL, Spectral localization vs. homogenization in the random conductance model, 19th ÖMG
Congress and Annual DMV Meeting, Minisymposium M6 “Spectral and Scattering Problems in Mathe-
matical Physics”, September 11–15, Austrian Mathematical Society (ÖMG) and Deutsche Mathematiker-
Vereinigung (DMV), Paris-Lodron University of Salzburg, Austria, September 12.

29. , Spectral localization vs. homogenization in the random conductance model, Berlin-Leipzig Work-
shop in Analysis and Stochastics, November 29 – December 1, Max-Planck-Institut für Mathematik in den
Naturwissenschaften, Leipzig, November 29.

30. P. FRIZ, A regularity structure for rough volatility, Global Derivates Trading & Risk Management Conference
2017, May 8–12, Barcelona, Spain, May 10.

31. , An application of regularity structures to the analysis of rough volatility, Fractional Brownian Mo-
tion and Rough Models, June 8–9, Barcelona Graduate School of Economics, Spain, June 9.

32. , General semimartingales and rough paths, Durham Symposium on Stochastic Analysis, July 10–
20, Durham University, Department of Mathematical Sciences, UK, July 13.

33. , Geometric aspects in pathwise stochastic analysis, High Risk High Gain – Groundbreaking Re-
search in Berlin, August 31 – September 3, Technische Universität Berlin, Stabsstelle Presse, Septem-
ber 2.

34. , Rough differential equations with jumps and their applications, Japanese-German Open Confer-
ence on Stochastic Analysis 2017, September 4–8, Technische Universität Kaiserslautern, Fachbereich
Mathematik, September 5.

35. , Multiscale systems, homogenization and rough paths, Berlin-Leipzig Workshop in Analysis
and Stochastics, November 29 – December 1, Max-Planck-Institut für Mathematik in den Naturwis-
senschaften, Leipzig, November 29.

36. A. GONZÁLEZ CASANOVA SOBERÓN, Modelling selection via multiple parents, Probability Seminar, Univer-
sity of Oxford, Mathematical Institute, UK, January 24.

37. , Modelling selection via multiple parents, Seminar Probability, National Autonomous University
of Mexico, Mexico City, February 23.

38. , Branching processes with interactions and their relation to population genetics, The 3rd Work-
shop on Branching Processes and Related Topics, May 8–12, Beijing Normal University, School of Mathe-
matical Sciences, China, May 8.

39. , The ancestral efficiency graph, Spatial Models in Population Genetics, September 6–8, University
of Bath, Department of Mathematical Sciences, UK, September 6.

40. , Modelling the Lenski experiment, 19th ÖMG Congress and Annual DMV Meeting, Section S16
“Mathematics in the Science and Technology”, September 11–15, Austrian Mathematical Society (ÖMG)
and Deutsche Mathematiker-Vereinigung (DMV), Paris-Lodron University of Salzburg, Austria, Septem-
ber 14.
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41. , The discrete ancestral selection graph, Seminar, Center for Interdisciplinary Research in Biology,
Stochastic Models for the Inference of Life Evolution SMILE, Paris, France, October 23.

42. R. GRUHLKE, Multi-scale failure analysis with polymorphic uncertainties for optimal design of rotor
blades, Frontiers of Uncertainty Quantification in Engineering (FrontUQ 2017), September 6–8, München,
September 6.

43. H. HEITSCH, A probabilistic approach to optimization problems in gas transport networks, SESO 2017
International Thematic Week “Smart Energy and Stochastic Optimization”, May 30 – June 1, ENSTA Paris-
Tech and École des Ponts ParisTech, Paris, France, June 1.

44. , On probabilistic capacity maximization in stationary gas networks, 21st Conference of the Inter-
national Federation of Operational Research Societies (IFORS 2017), Invited Session TB20 “Optimization
of Gas Networks 2”, July 17–21, Quebec, Canada, July 18.

45. R. HENRION, Contraintes en probabilité: Formules du gradient et applications, Workshop “MAS-MODE
2017”, Institut Henri Poincaré, Paris, France, January 9.

46. , On a joint model for probabilistic/robust constraints with an application to gas networks under
uncertainties, Workshop “Models and Methods of Robust Optimization”, March 9–10, Fraunhofer-Institut
für Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern, March 10.

47. , On M-stationary condition for a simple electricity spot market model, Workshop “Variational Anal-
ysis and Applications for Modelling of Energy Exchange”, May 4–5, Université Perpignan, France, May 4.

48. , Subdifferential estimates for Gaussian probability functions, HCM Workshop: Nonsmooth Opti-
mization and its Applications, May 15–19, Hausdorff Center for Mathematics, Bonn, May 17.

49. , Subdifferential characterization of Gaussian probability functions, SESO 2017 International The-
matic Week “Smart Energy and Stochastic Optimization”, May 30 – June 1, ENSTA ParisTech and École
des Ponts ParisTech, Paris, France, June 1.

50. , Problèmes d’optimisation sous contraintes en probabilité, Université de Bourgogne, Départe-
ment de Mathématiques, Dijon, France, October 25.

51. , Probabilistic constraints in infinite dimensions, Universität Wien, Institut für Statistik und Opera-
tions Research, Austria, November 6.

52. , Probabilistic programming: Structural properties and applications, Control and Optimization
Conference on the occasion of Frédéric Bonnans 60th birthday, November 15–17, Electricité de France,
Palaiseau, France, November 17.

53. , Optimization problems under robust constraints with applications to gas networks under uncer-
tainty, The Eighth Australia-China Workshop on Optimization (ACWO 2017), December 4, Curtin Univer-
sity, Perth, Australia, December 4.

54. , Subdifferential of probability functions under Gaussian distribution, The Second Pacific Optimiza-
tion Conference (POC2017), December 4–7, Curtin University, Perth, Australia, December 6.

55. , Probabilistic programming in infinite dimensions, The South Pacific Optimization Meeting in
Western Australia 2017 (SPOM in WA 2017), December 8–10, Curtin University, Perth, Australia, Decem-
ber 9.

56. M. HINTERMÜLLER, Non-smooth structures in PDE-constrained optimization, Mathematisches Kolloquium,
Universität Duisburg-Essen, Fakultät für Mathematik, Essen, January 11.

57. , Bilevel optimization and applications in imaging, Mathematisches Kolloquium, Universität Wien,
Austria, January 18.

58. , Presentation of the GAMM-related DFG Priority Programme 1962 “Non-smooth and
Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization”,
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88th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM
2017), March 6–10, Bauhaus Universität Weimar/Technische Universität Ilmenau, Weimar, March 9.

59. , Optimal control of nonsmooth phase-field models, DFG-AIMS Workshop on “Shape Optimization,
Homogenization and Control”, March 13–16, Mbour, Senegal, March 14.

60. , Optimal control of multiphase fluids and droplets, Kolloquium, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department Mathematik, Erlangen, May 2.

61. , (Pre)Dualization, dense embeddings of convex sets, and applications in image processing, HCM
Workshop: Nonsmooth Optimization and its Applications, May 15–19, Hausdorff Center for Mathematics,
Bonn, May 15.

62. , Adaptive finite element solvers for MPECs in function space, SIAM Conference on Optimiza-
tion, Minisymposium MS122 “Recent Trends in PDE-Constrained Optimization”, May 22–25, Vancouver,
British Columbia, Canada, May 25.

63. , Total variation diminishing Runge–Kutta methods for the optimal control of conservation laws:
Stability and order-conditions, SIAM Conference on Optimization, Minisymposium MS111 “Optimization
with Balance Laws on Graphs”, May 22–25, Vancouver, British Columbia, Canada, May 25.

64. , Generalized Nash equilibrium problems in Banach spaces: Theory, Nikaido–Isoda-based path-
following methods, and applications, The Third International Conference on Engineering and Computa-
tional Mathematics (ECM2017), Stream 3 “Computational Optimization”, May 31 – June 2, The Hong
Kong Polytechnic University, China, June 2.

65. , Nonsmooth structures in PDE constrained optimization, Optimization Seminar, Chinese Academy
of Sciences, State Key Laboratory of Scientific and Engineering Computing, Beijing, China, June 6.

66. , Generalized Nash games with partial differential equations, Kolloquium Arbeitsgruppe Model-
lierung, Numerik, Differentialgleichungen, Technische Universität Berlin, June 20.

67. , Optimal control of multiphase fluids based on non smooth models, 14th International Conference
on Free Boundary Problems: Theory and Applications, Theme Session 8 “Optimization and Control of
Interfaces”, July 9–14, Shanghai Jiao Tong University, China, July 10.

68. , On (pre)dualization, dense embeddings of convex sets, and applications in image processing,
Seminar, Isaac Newton Institute, Programme “Variational Methods and Effective Algorithms for Imaging
and Vision”, Cambridge, UK, August 30.

69. , Bilevel optimization and some “parameter learning” applications in image processing, LMS Work-
shop “Variational Methods Meet Machine Learning”, September 18, University of Cambridge, Centre for
Mathematical Sciences, UK, September 18.

70. , On (pre)dualization, dense embeddings of convex sets, and applications in image processing,
University College London, Centre for Inverse Problems, UK, October 27.

71. D. HÖMBERG, Mathematical aspects of multi-frequency induction heating, Universidade Técnica de Lisboa,
Instituto Superior Técnico, Portugal, February 2.

72. , On a robust phase field approach to topology optimization, Università degli Studi di Pavia, Dipar-
timento di Matematica, Italy, April 28.

73. , Joule heating models – Modelling, analysis and industrial application, Beijing Computational
Science Research Center, China, October 10.

74. , Optimal coefficient control for semilinear parabolic equations, The 15th Annual Meeting of the
China Society for Industrial and Applied Mathematics, Embedded Meeting EM02 “A3 Workshop on Mod-
eling and Computation of Applied Inverse Problems”, October 12–15, Qingdao, China, October 14.

75. , The Digital Factory – A perspective for a closer cooperation between Math and Industry, Meeting
“M414 Mathematics for Industry 4.0”, November 7, Vicenza Convention Centre, Italy, November 7.
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76. B. JAHNEL, The Widom–Rowlinson model under spin flip: Immediate loss and sharp recovery of quasilocal-
ity, Westfälische Wilhelms-Universität Münster, Fachbereich Mathematik und Informatik, January 18.

77. , The Widom–Rowlinson model under spin flip: Immediate loss and sharp recovery of quasilocality,
Oberseminar Wahrscheinlichkeitstheorie, Ludwig-Maximilians-Universität München, Fakultät für Mathe-
matik, Informatik und Statistik, February 13.

78. , The Widom–Rowlinson model under spin flip: Immediate loss and sharp recovery of quasilocality,
Oberseminar Stochastik, Johannes Gutenberg Universität Mainz, Institut für Mathematik, April 25.

79. B. JAHNEL, Stochastic geometry in telecommunications, 3 talks, Summer School 2017: Probabilistic and
Statistical Methods for Networks, August 21 – September 1, Technische Universität Berlin, Berlin Mathe-
matical School, August 23–25.

80. , Large deviations in relay-augmented wireless networks, Sharif University of Technology Tehran,
Mathematical Sciences Department, Teheran, Iran, September 17.

81. , Continuum percolation for Cox processes, Seminar, Ruhr Universität Bochum, Fakultät für Mathe-
matik, October 27.

82. , Continuum percolation theory applied to Device to Device, Telecom Orange Paris, France, Novem-
ber 17.

83. , Gibbsian representation for point processes via hyperedge potentials, Workshop on Stochastic
Analysis and Random Fields, Second Haifa Probability School, December 18–22, Technion Israel Institute
of Technology, Haifa, Israel, December 18.

84. V. JOHN, Variational multiscale (VMS) methods for the simulation of turbulent incompressible flows,
Mahindra École Centrale, School of Natural Sciences, Hyderabad, India, March 9.

85. , Variational multiscale (VMS) methods for the simulation of turbulent incompressible flows, CDS:
Computational Science Symposium, March 16–18, Indian Institute of Science, Department of Computer
and Data Sciences, Bangalore, India, March 16.

86. , Variational multiscale (VMS) methods for the simulation of turbulent incompressible flows, Chi-
nese Academy of Sciences, Academy of Mathematics and Systems Science, Beijing, May 10.

87. , Variational multiscale (VMS) methods for the simulation of turbulent incompressible flows,
Peking University, School of Mathematical Sciences, Beijing, China, May 11.

88. , Finite element methods for incompressible flow problems, 10 talks, Beijing Computational Sci-
ence Research Center, Applied and Computational Mathematics, China, May 14–18.

89. , Finite elements for scalar convection-dominated equations and incompressible flow problems —
A never ending story?, 30th Chemnitz FEM Symposium, September 25–27, Bundesinstitut für Erwachse-
nenbildung, St. Wolfgang / Strobl, Austria, September 27.

90. P. KEELER, Optimizing spatial throughput in device-to-device networks, Applied Probability @ The Rock –
An International Workshop celebrating Phil Pollett’s 60th Birthday, April 17–21, University of Adelaide,
School of Mathematical Sciences, Uluru, Australia, April 20.

91. T. KEIL, Strong stationarity conditions for the optimal control of a Cahn–Hilliard–Navier–Stokes system,
14th International Conference on Free Boundary Problems: Theory and Applications, Theme Session 8

“Optimization and Control of Interfaces”, July 9–14, Shanghai Jiao Tong University, China, July 10.

92. O. KLEIN, Uncertainty quantification for models involving hysteresis operators, 3 talks, Summer School
on Multi-Rate Processes, Slow-Fast Systems and Hysteresis MURPHYS-HSFS-2017, June 19–23, DISMA
Politecnico di Torino, Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Italy, June 19–
20.

93. W. KÖNIG, A variational formula for an interacting many-body system, Probability Seminar, University of
California, Los Angeles, Department of Mathematics, USA, January 19.
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94. , The principal part of the spectrum of a random Schrödinger operator in a large box, Mathemati-
sches Kolloquium, Oberseminar Stochastik und Analysis, Technische Universität Dormund, May 15.

95. , Connectivity in large mobile ad-hoc networks, Summer School 2017: Probabilistic and Statistical
Methods for Networks, August 21 – September 1, Technische Universität Berlin, Berlin Mathematical
School, August 29.

96. , Moment asymptotics of branching random walks in random environment, Modern Perspective
of Branching in Probability, September 26–29, Westfälische Wilhelms-Universität Münster, Fachbereich
Mathematik und Informatik, September 28.

97. , Intersections of Brownian motions, Workshop “Peter’s Network”, October 31 – November 1, Uni-
versity of Bath, Department of Mathematical Sciences, UK, November 1.

98. , Cluster-size distributions in a classical many-body system, Berlin-Leipzig Workshop in Analy-
sis and Stochastics, November 29 – December 1, Max-Planck-Institut für Mathematik in den Naturwis-
senschaften, Leipzig, November 29.

99. TH. KOPRUCKI, How to tidy up the jungle of mathematical models? A prerequisite for sustainable research
software, 2nd Conference on Non-Textual Information “Software and Services for Science (S3)”, May 10–
11, Technische Informationsbibliothek, Hannover, May 11.

100. , Über das L-Konzept einer physikalischen Theorie, Seminar Wissensrepräsentation und
-verarbeitung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Informatik, Erlangen,
May 17.

101. , On the Scharfetter–Gummel scheme for the discretization of drift-diffusion equations and its gen-
eralization beyond Boltzmann, Kolloquium Modellierung, Numerik, Differentialgleichungen, Technische
Universität Berlin, Institut für Mathematik, May 30.

102. M. LANDSTORFER, Theory, structure and experimental justification of the metal/electrolyte interface, Uni-
versität Münster, Institut für Analysis und Numerik, July 11.

103. M. LIERO, On entropy-transport problems and the Hellinger–Kantorovich distance, Seminar of Team EDP-
AIRSEA-CVGI, Université Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble, France, January 26.

104. M. LIERO, The Hellinger–Kantorovich distance as natural generalization of optimal transport distance to
(scalar) reaction-diffusion equations, Workshop “Variational Methods for Evolution”, November 12–17,
Mathematisches Forschungsinstitut Oberwolfach, November 14.

105. , The Hellinger–Kantorovich distance as natural generalization of optimal transport distance to
(scalar) reaction-diffusion equations, Oberseminar “Angewandte Analysis”, Universität Dortmund, Insti-
tut für Mathematik, November 29.

106. A. LINKE, Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations, Uni-
versität der Bundeswehr München, Institut für Mathematik und Bauinformatik, Neubiberg, January 18.

107. , Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations, Tech-
nische Universität Dortmund, Institut für Angewandte Mathematik, March 23.

108. , Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations, Freie
Universität Berlin, Institut für Mathematik, May 3.

109. , Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations, CASM
International Conference on Applied Mathematics, May 22–24, Lahore University of Management Sci-
ences, Centre for Advanced Studies in Mathematics, Pakistan, May 23.

110. , Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations, Tech-
nische Universität Darmstadt, Fachbereich Mathematik, July 20.
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111. C. LÖBHARD, A function space based solution method with space-time adaptivity for parabolic optimal
control problems with state constraints, PGMO Days 2017, November 13–14, EDF Lab Paris Saclay, France,
November 14.

112. M. MARSCHALL, Sampling-free Bayesian inversion with adaptive hierarchical tensor representation, Fron-
tiers of Uncertainty Quantification in Engineering (FrontUQ 2017), September 6–8, München, Septem-
ber 7.

113. , Sampling-free Bayesian inversion with adaptive hierarchical tensor representation, International
Conference on Scientific Computation and Differential Equations (SciCADE2017), MS21 “Tensor Approx-
imations of Multi-Dimensional PDEs”, September 11–15, University of Bath, UK, September 14.

114. P. MATHÉ, Complexity of supervised learning, ibc-paris2017 : Information Based Complexity, High-
Dimensional Problems, March 14–15, Institut Henri Poincaré, Paris, France, March 15.

115. , Bayesian inverse problems with non-commuting operators, Statistical Foundations of Uncertainty
Quantification for Inverse Problems Workshop, June 19–22, University of Cambridge, Center for Mathe-
matical Sciences, UK, June 21.

116. , Tikhonov regularization with oversmoothing penalty, 7th German-Polish Conference on Optimiza-
tion (GPCO 2017), August 27 – September 1, Mathematical Research and Conference Center of IMPAN,
Będlewo, Poland, August 28.

117. , Numerical integration (mini course), 3 talks, Fudan University, School of Mathematical Sciences,
China, November 20 – December 4.

118. M. MAURELLI, Regularization by noise for scalar conservation laws, Stochastic Analysis Day, February 27,
Università di Pisa, Dipartimento di Matematica, Italy, February 27.

119. , Regularization by noise for scalar conservation laws, Séminaire de Probabilité et Statistique, Uni-
versité de Nice Sophia-Antipolis, Laboratoire Jean Alexandre Dieudonné, France, September 26.

120. , Stochastic 2D Euler equations with transport noise, Chalmers University of Technology, Depart-
ment of Mathematical Sciences, Gothenburg, Sweden, November 28.

121. , A McKean–Vlasov SDE with reflecting boundaries, 8th Oxford-Berlin Young Researchers Meeting
on Applied Stochastic Analysis, December 14–16, University of Oxford, Mathematical Institute, UK, De-
cember 15.

122. , A McKean–Vlasov SDE with reflecting boundaries, Seminar of SPASS – Probability, Stochastic
Analysis and Statistics in Pisa, Università di Pisa, Dipartimento di Matematica, Italy, December 18.

123. CH. MERDON, Druckrobuste Finite-Elemente-Methoden für die Navier-Stokes-Gleichungen, Universität
Paderborn, Institut für Mathematik, April 25.

124. , Pressure-robustness in mixed finite element discretisations for the Navier–Stokes equations, Uni-
versität des Saarlandes, Fakultät für Mathematik und Informatik, July 12.

125. A. MIELKE, A geometric approach to reaction-diffusion equations, Institutskolloquium, Universität Pots-
dam, Institut für Mathematik, January 25.

126. , Uniform exponential decay for energy-reaction-diffusion systems, Analysis Seminar, University of
Pavia, Department of Mathematics, Italy, March 21.

127. , On self-induced oscillations for friction reduction with applications to walking, Conference “Dy-
namical Systems and Geometric Mechanics”, June 12–14, Technische Universität München, Zentrum für
Mathematik, June 13.

128. , Entropy-induced geometry for classical and quantum Markov semigroups, SMS Colloquium, Uni-
versity College Cork, School of Mathematical Science, Ireland, September 11.
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129. , Perspectives for gradient flows, GAMM-Workshop on Analysis of Partial Differential Equations,
September 27–29, Eindhoven University of Technology, Mathematics and Computer Science Department,
Netherlands, September 28.

130. M. MITTNENZWEIG, An entropic gradient structure for quantum Markov semigroups, Workshop “Applica-
tions of Optimal Transportation in the Natural Sciences”, January 30 – February 3, Mathematisches
Forschungsinstitut Oberwolfach, January 31.

131. M. MITTNENZWEIG, A variational approach to the Lindblad equations, Scientific Computing Seminar, École
des Ponts ParisTech, CERMICS, Paris, France, April 24.

132. , Gradient flow structures for quantum master equations, Analysis-Seminar Augsburg-München,
Universität Augsburg, Institut für Mathematik, June 8.

133. , Variational methods for quantum master equations, BMS – BGSMath Junior Meeting, October 9–
10, Berlin Mathematical School and Barcelona Graduate School of Mathematics, Barcelona, Spain, Octo-
ber 10.

134. , A variational approach to quantum master equations coupled to a semiconductor PDE, Workshop
“Variational Methods for Evolution”, November 12–17, Mathematisches Forschungsinstitut Oberwolfach,
November 14.

135. H.-J. MUCHA, Big data clustering: Comparison of the performance of a new fast pre-clustering and sub-
sampling, German Polish Seminar on Data Analysis and Applications 2017, September 25–26, Wrocław
University of Economics, Poland, September 26.

136. CH. MUKHERJEE, Asymptotic behavior of the mean-field polaron, Probability and Mathematical Physics
Seminar, Courant Institute of Mathematical Sciences, Department of Mathematics, New York, USA,
March 20.

137. R. MÜLLER, A posteriori analysis for coupled bulk-surface problems, Oberseminar “Angewandte Analysis
und Numerische Simulation”, Universität Stuttgart, Institut für Angewandte Analysis und Numerische
Simulation, June 1.

138. , Consistent coupling of charge transport and fluid flow with application to nanopores, ACOMEN
2017 – 7th International Conference on Advanced Computational Methods in Engineering, Minisympo-
sium MS7 “Electrokinetic and Electrochemical Flows for Batteries and Fuel Cells: Analysis, Simulation,
Upscaling”, September 18–22, Ghent University, Belgium, September 21.

139. O. OMEL’CHENKO, Introduction to chimera states, Seminar of the Scientific Computing Laboratory, Univer-
sity of Belgrade, Institue of Physics, Serbia, May 4.

140. , Bifurcations mediating the appearance of chimera states, SIAM Conference on Applications of
Dynamical Systems (DS 17), Minisymposium “Large Scale Dynamics In Coupled Systems On Networks”,
May 21–25, Society for Industrial and Applied Mathematics (SIAM), Snowbird, USA, May 24.

141. , Bifurcations mediating appearance of chimera states, XXXVII Dynamics Days Europe, Minisympo-
sium 3 “Complex Networks: Delays And Collective Dynamics”, June 5–9, University of Szeged, Faculty of
Science and Informatics, Hungary, June 8.

142. , Controlling unstable complex dynamics: From coupled oscillators to fluid mechanics, XV Latin
American Workshop on NonLinear Phenomena, November 6–10, Facultad de Ciencias y Astronomía, Uni-
versidad de La Serena, Chile, November 7.

143. R.I.A. PATTERSON, Confidence intervals for coagulation–advection simulations, Clausthal-Göttingen Inter-
national Workshop on Simulation Science, April 27–28, Georg-August-Universität Göttingen, Institut für
Informatik, April 28.

144. R.I.A. PATTERSON, Simulation of particle coagulation and advection, Numerical Methods and Applications
of Population Balance Equations, October 13, GRK 1932, Technische Universität Kaiserslautern, Fachbe-
reich Mathematik, October 13.
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145. D. PESCHKA, Modelling and simulation of suspension flow, Graduate Seminar PDE in the Sciences, Univer-
sität Bonn, Institut für Angewandte Mathematik, January 20.

146. , Motion of thin droplets over surfaces, Making a Splash – Driplets, Jets and Other Singularities,
March 20–24, Brown University, Institute for Computational and Experimental Research in Mathematics
(ICERM), Providence, USA, March 22.

147. , Variational structure of fluid motion with contact lines in thin-film models, Kolloquium Ange-
wandte Mathematik, Universität der Bundeswehr, München, May 31.

148. , Mathematical and numerical approaches to moving contact lines, Scuola Internazionale Superi-
ore di Studi Avanzati (SISSA), Trieste, Italy, December 6.

149. P. PIGATO, The oscillating Brownian motion: Estimation and application to volatility modeling, Probability
Seminar, Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Italy, Septem-
ber 26.

150. , The oscillating Brownian motion: Estimation and application to volatility modelling, Finance and
Stochastics Seminar, Imperial College London, Department of Mathematics, UK, November 15.

151. A. PIMENOV, Time-delay models of multi-mode laser dynamics, SIAM Conference on Applications of Dy-
namical Systems (DS17), May 21–25, Society for Industrial and Applied Mathematics (SIAM), Snowbird,
USA, May 24.

152. J. POLZEHL, Toward in-vivo histology of the brain, Neuro-Statistics: The Interface between Statistics and
Neuroscience, University of Minnesota, School of Statistics (IRSA), Minneapolis, USA, May 5.

153. , Connectivity networks in neuroscience – Construction and analysis, 2 talks, Summer School 2017:
Probabilistic and Statistical Methods for Networks, August 21 – September 1, Technische Universität
Berlin, Berlin Mathematical School, August 21–22.

154. , Neue statistische Methoden zur Biomarkerselektion, Symposium “Biomarker: Objektive Parame-
ter als Grundlage für die erfolgreiche individuelle Therapie”, November 21, Leibniz Gesundheitstechnolo-
gien, Berlin, November 21.

155. , Structural adaptation – A statistical concept for image denoising, Seminar, Isaac Newton Insti-
tute, Programme “Variational Methods and Effective Algorithms for Imaging and Vision”, Cambridge, UK,
December 5.

156. , Towards in-vivo histology of the brain, Berlin Symposium 2017: Modern Statistical Methods From
Data to Knowledge, December 14–15, organized by Indiana Laboratory of Biostatistical Analysis of Large
Data with Structure (IL-BALDS), Berlin, December 14.

157. M. REDMANN, A regression method to solve parabolic rough PDEs, Ninth Workshop on Random Dynamical
Systems, June 14–17, Universität Bielefeld, Fakultät für Mathematik, June 15.

158. , Type II singular perturbation approximation for linear systems with Levy noise, London Mathe-
matical Society – EPSRC Durham Symposium: Model Order Reduction, Durham University, Department of
Mathematical Sciences, UK, August 14.

159. J. REHBERG, On optimal elliptic Sobolev regularity, Oberseminar Prof. Ira Neitzel, Rheinische Friedrich-
Wilhelms-Universität Bonn, Institut für Numerische Simulation, February 2.

160. , Explicit and uniform resolvent estimates for second order divergence operators on L p spaces,
Oberseminar Analysis, Technische Universität Darmstadt, Fachbereich Mathematik, November 9.

161. S. REICHELT, Pulses in FitzHugh–Nagumo systems with periodic coefficients, Seminar “Dynamical Systems
and Applications”, Technische Universität Berlin, Institut für Mathematik, May 3.

162. , Corrector estimates for elliptic and parabolic equations with periodic coefficients, Analysis Sem-
inar, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Angewandte Mathematik, Erlangen,
May 18.
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163. , Corrector estimates for elliptic and parabolic equations with periodic coefficients, Analysis Semi-
nar, Universität Augsburg, Institut für Mathematik, May 23.

164. D.R.M. RENGER, Large deviations and gradient flows, Spring School 2017: From Particle Dynamics to Gra-
dient Flows, February 27 – March 3, Technische Universität Kaiserslautern, Fachbereich Mathematik,
March 1.

165. , Banach-valued functions of bounded variation, Oberseminar Analysis, Universität Regensburg,
Fakultät für Mathematik, July 28.

166. , Was sind und was sollen die Zahlen, Tag der Mathematik, Universität Regensburg, Fakultät für
Mathematik, July 28.

167. , Gradient flows and GENERIC in flux space, Workshop “Variational Methods for Evolution”, Novem-
ber 12–18, Mathematisches Forschungsinstitut Oberwolfach, November 16.

168. J.G.M. SCHOENMAKERS, Projected particle methods for solving McKean–Vlasov SDEs, Dynstoch 2017,
April 5–7, Universität Siegen, Department Mathematik, April 6.

169. , Projective simulation and regression methods for Mckean–Vlasov SDE systems, Mathematisches
Kolloquium, Universität Duisburg-Essen, Fakultät für Mathematik, November 29.

170. H. SI, On tetrahedralisations containing knotted and linked line segments, Dalian University, School of
Software and Technology, China, August 10.

171. , An introduction to Delaunay-based mesh generation and adaptation, 10th National Symposium
on Geometric Design and Computing (GDC 2017), August 12–14, Shandong Business School, Yantai,
China, August 12.

172. , On tetrahedralisations containing knotted and linked line segments, 26th International Meshing
Roundtable and User Forum “Mesh Modeling for Simulations and Visualization”, Session 4A “Tet Mesh-
ing”, September 18–22, Barcelona, Spain, September 19.

173. , Challenges in tetrahedral mesh generation, PaMPA: Parallel Mesh Partitioning and Adaptation,
1st PaMPA Day Workshop, October 18, INRIA Bordeaux – Sud-Ouest, France, October 18.

174. , Tetrahedral mesh improvement using moving mesh smoothing and lazy searching flips, Univer-
sity Beijing, School of Mathematics and Systems Science, China, December 1.

175. R. SOARES DOS SANTOS, Random walk on random walks, Mathematical Probability Seminar, New York Uni-
versity Shanghai, China, March 21.

176. , Concentration de masse dans le modèle parabolique d’Anderson, Séminaire de Probabilités, Uni-
versité de Grenoble, Institut Fourier, Laboratoire des Mathematiques, France, April 11.

177. , Complete localisation in the Bouchaud–Anderson model, Leiden University, Institute of Mathe-
matics, Netherlands, May 9.

178. , Eigenvalue order statistics of random Schrödinger operators and applications to the parabolic
Anderson model, 19th ÖMG Congress and Annual DMV Meeting, Minisymposium M6 “Spectral and Scat-
tering Problems in Mathematical Physics”, September 11–15, Austrian Mathematical Society (ÖMG) and
Deutsche Mathematiker-Vereinigung (DMV), Paris-Lodron University of Salzburg, Austria, September 12.

179. V. SPOKOINY, Nonparametric estimation: Parametric view, 6 talks, Advanced Statistical Methods, Indepen-
dent University of Moscow, Russian Federation, February 7–22.

180. , Adaptive nonparametric clustering, Workshop “Statistical Recovery of Discrete, Geometric and
Invariant Structures”, March 19–25, Mathematisches Forschungsinstitut Oberwolfach, March 24.

181. , Subset selection using the smallest accepted rule, Structure Learning Seminar, Russian Academy
of Sciences, Kharkevich Institute for Information Transmission Problems, PreMoLab, Moscow, April 6.
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182. , Gaussian approximation of the squared norm of a high dimensional vector, Structural Learning
Seminar, Russian Academy of Sciences, Kharkevich Institute for Information Transmission Problems, Pre-
MoLab, Moscow, May 18.

183. , Gaussian approximation for a probability of a ball, Structural Learning Seminar, Russian Academy
of Sciences, Kharkevich Institute for Information Transmission Problems, PreMoLab, Moscow, June 5.

184. , Structural learning, Structural Learning Seminar, Russian Academy of Sciences, Kharkevich Insti-
tute for Information Transmission Problems, PreMoLab, Moscow, October 25.

185. , Bootstrap confidence sets for spectral projectors of sample covariance (joint with A. Naumov and
V. Ulyanov), Séminaire de Statistique, Université de Toulouse, Institut de Mathématiques, France, Novem-
ber 7.

186. , Adaptive nonparametric clustering, Rencontres de Statistique Mathématique, December 18–22,
Centre International de Rencontres Mathématiques (CIRM), Luminy, France, December 18.

187. A. SUVORIKOVA, Construction of confidence sets in 2-Wasserstein space, Haindorf Seminar 2017, Jan-
uary 24–28, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, Hejnice, Czech Re-
public, January 26.

188. , Construction of confidence sets in 2-Wasserstein space, Machine Learning Seminar, Université
Paul-Sabatier, Institut de Mathématiques de Toulouse, France, December 1.

189. K. TABELOW, To smooth or not to smooth in fMRI, Cognitive Neuroscience Seminar, Universitätsklinikum
Hamburg-Eppendorf, Institut für Computational Neuroscience, April 4.

190. , High resolution MRI by variance and bias reduction, Channel Network Conference 2017 of the
International Biometric Society (IBS), April 24–26, Hasselt University, Diepenbeek, Belgium, April 25.

191. , Adaptive smoothing of multi-parameter maps, Berlin Symposium 2017: Modern Statistical Meth-
ods From Data to Knowledge, December 14–15, organized by Indiana Laboratory of Biostatistical Analy-
sis of Large Data with Structure (IL-BALDS), Berlin, December 14.

192. M. THOMAS, Rate-independent delamination processes in visco-elasticity, Miniworkshop on Dislocations,
Plasticity, and Fracture, February 13–16, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Tri-
este, Italy, February 15.

193. , Why scientist in Academia?, I, SCIENTIST: The Conference on Gender, Career Paths and Network-
ing, May 12–14, Freie Universität Berlin, May 14.

194. , Mathematical modeling and analysis of evolution processes in solids and the influence of bulk-
interface-interaction, Humboldt-Universität zu Berlin, Institut für Mathematik, October 20.

195. W. VAN ZUIJLEN, Mean-field Gibbs-non-Gibbs transitions, Mark Kac Seminar, Utrecht University, Mathemat-
ical Institute, Netherlands, February 3.

196. , The principal eigenvalue of the Anderson Hamiltonian in continuous space, Berlin-Leipzig Work-
shop in Analysis and Stochastics, November 29 – December 1, Max-Planck-Institut für Mathematik in den
Naturwissenschaften, Leipzig, November 29.

197. A.G. VLADIMIROV, Mathematical modeling of dispersive and diffractive multimode lasers, 1st Sino-
German Symposium on Fiber Photonics for Light Matter Interaction, September 17–21, Shanghai Uni-
versity, China, September 19.

198. , Mathematical modelling of multimode laser dynamics, Seminar of the Ultrafast Laser Laboratory,
Institute for Quantum Optics, Leibniz University of Hannover, November 17.

199. A. WAPENHANS, Data mobility in ad-hoc networks: Vulnerability & security, Telecom Orange Paris, France,
November 17.
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200. U. WILBRANDT, ParMooN – A parallel finite element solver, Part II, Indian Institute of Science, Supercom-
puter Education and Research Centre, Bangalore, India, March 16.

201. M. WOLFRUM, Synchronization transitions in systems of coupled phase oscillators, IPB Colloquium, Insti-
tute of Physics Belgrade, Serbia, May 9.

202. , Chimera states in systems of coupled phase oscillators, Emerging Topics in Network Dynamical
Systems, June 6–9, Lorentz Center, Leiden, Netherlands, June 6.

A.8.3 Talks for a More General Public

1. M. EIGEL, Revolution im dritten Anlauf: Der bemerkenswerte Siegeszug des Deep Learnings, MathInside –
Mathematik ist überall, Urania, Berlin, March 21.

2. C. GUHLKE, Lithium-Ionen-Batterien und Luftballons – Ein Fall für die Mathematik!, MathInside – Mathematik
ist überall, Urania, Berlin, March 21.

3. B. JAHNEL, Stochastische Geometrie und das Internet der Dinge, Tag der Mathematik 2017, Humboldt-
Universität zu Berlin, Institut für Mathematik, April 22.

4. W. KÖNIG, Universalität der Fluktuationen: Warum ist alles Gauß-verteilt?, MathInside – Mathematik ist über-
all, Urania, Berlin, January 5.

5. C. LÖBHARD, Simpson sucht die Null: Wie eine uralte Idee heute genutzt wird, Girls’ Day, WIAS Berlin, April 27.

6. S. REICHELT, Achilles und die Schildkröte, Girls’ Day, WIAS Berlin, April 27.

7. D.R.M. RENGER, Wie man nicht-differenzierbare Funktionen differenzieren kann, Tag der Mathematik 2017,
Humboldt-Universität zu Berlin, Institut für Mathematik, April 22.

8. H. STEPHAN, Denkblockaden und mathematische Paradoxa (I) und (II), Lange Nacht der Wissenschaften
(Long Night of the Sciences) 2017, WIAS at Leibniz Association Headquarters, Berlin, June 24.

A.8.4 Posters

1. W. DREYER, J. FUHRMANN, P. GAJEWSKI, C. GUHLKE, M. LANDSTORFER, M. MAURELLI, R. MÜLLER, Stochastic
model for LiFePO4-electrodes, ModVal14 – 14th Symposium on Fuel Cell and Battery Modeling and Exper-
imental Validation, Karlsruhe, March 2–3.

2. P. DVURECHENSKY, Gradient method with inexact oracle for non convex optimization, 3rd Applied Mathemat-
ics Symposium Münster: Shape, Imaging and Optimization, February 28 – March 3.

3. , Gradient method with inexact oracle for composite non-convex optimization, Optimization and Sta-
tistical Learning, Les Houches, France, April 10–14.

4. , Gradient method with inexact oracle for composite non-convex optimization, Foundations of Com-
putational Mathematics (FoCM 2017), Barcelona, Spain, July 17–19.

5. , A unified view on accelerated randomized optimization methods: Coordinate descent, directional
search, derivative-free method, Foundations of Computational Mathematics (FoCM 2017), Barcelona,
Spain, July 17–19.

6. , Faster algorithms for optimal transport, 3. International Matheon Conference on Compressed Sens-
ing and its Applications 2017, Berlin, December 4–8.

7. J. FUHRMANN, A. GLITZKY, M. LIERO, Hybrid finite-volume/finite-element schemes for p(x)-Laplace thermis-
tor models, 8th International Symposium on Finite Volumes for Complex Applications (FVCA 8), Université
Lille 1, Villeneuve d’Ascq, France, June 15.
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8. J. FUHRMANN, A. LINKE, CH. MERDON, Models and numerical methods for ionic mixtures with volume con-
straints, 12th International Symposium on Electrokinetics, Dresden, September 10–12.

9. C. GUHLKE, Vom Luftballon zur Lithium-Ionen-Batterie, Lange Nacht der Wissenschaften, Technische Univer-
sität Berlin, Haus der Mathematik, June 24.

10. , Modelling of ion transport in electrolytes – A thermodynamic approach, 2nd Dresden Battery Days,
Dresden, September 18–20.

11. M. HEIDA, A. MIELKE, Effective models for interfaces with many scales, CRC 1114 Conference ”Scaling Cas-
cades in Complex Systems 2017”, Berlin, March 27–29.

12. A. FISCHER, M. LIERO, A. GLITZKY, TH. KOPRUCKI, K. VANDEWAL, S. LENK, S. REINICKE, Predicting electrother-
mal behavior from lab-size OLEDs to large area lighting panels, MRS Spring Meeting & Exhibit, Materials
Research Society, Phoenix, Arizona, USA, April 17–21.

13. M. LIERO, A. GLITZKY, TH. KOPRUCKI, J. FUHRMANN, 3D electrothermal simulations of organic LEDs showing
negative differential resistance, Multiscale Modelling of Organic Semiconductors: From Elementary Pro-
cesses to Devices, Grenoble, France, September 12–15.

14. N. KUMAR, J. TEN THIJE BOONKKAMP, B. KOREN, A. LINKE, A nonlinear flux approximation scheme for the
viscous Burgers equation, 8th International Symposium on Finite Volumes for Complex Applications (FVCA
8), Université Lille 1, Villeneuve d’Ascq, France, June 12–16.

15. V. SPOKOINY, Adaptive nonparametric clustering, Optimization and Statistical Learning, Les Houches,
France, April 10–14.

16. A. SUVORIKOVA, Construction of non-asymptotic confidence sets in 2-Wasserstein space, Spring School
“Structural Inference” 2017, Bad Malente, March 5–10.

17. K. TABELOW, CH. D’ALONZO, J. POLZEHL, Toward in-vivo histology of the brain, 2nd Leibniz MMs Days 2017,
Technische Informationsbibliothek, Hannover, February 22–24.

18. K. TABELOW, CH. D’ALONZO, L. RUTHOTTO, M.F. CALLAGHAN, N. WEISKOPF, J. POLZEHL, S. MOHAMMADI, Re-
moving the estimation bias due to the noise floor in multi-parameter maps, The International Society for
Magnetic Resonance in Medicine (ISMRM) 25th Annual Meeting & Exhibition, Honolulu, USA, April 22–27.

19. B. WAGNER, Rheologies of dense suspensions, Workshop “Form and Deformation in Solid and Fluid Me-
chanics”, Isaac Newton Institute, Cambridge, UK, September 18–22.
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A.9 Visits to other Institutions5

1. J. SPREKELS, University of Pavia, Department of Mathematics, Italy, February 19–24.

2. , Fudan University, School of Mathematical Sciences, China, April 4–12.

3. , University of Pavia, Department of Mathematics, Italy, November 12–16.

4. N. AHMED, Technische Universität Dresden, Institut für Numerische Mathematik, March 6–9.

5. N. ALIA, University of Oulu Graduate School, Finland, January 1–31.

6. , SSAB, Raahe, Finland, February 1 – December 31.

7. L. ANDREIS, Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Padua, Italy,
November 15–20.

8. M.J. ARENAS JAÉN, University of Oulu, Faculty of Technology, Finland, November 4, 2016 – January 31, 2017.

9. , EFD Induction AS, Skien, Norway, August 15 – September 12.

10. C. BARTSCH, Indian Institute of Science, Supercomputer Education and Research Centre, Bangalore, India,
March 7–16.

11. CH. BAYER, King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathe-
matical Sciences & Engineering Division, Thuwal, Saudi Arabia, May 21 – June 1.

12. , Rheinisch-Westfälische Technische Hochschule Aachen, Aachen Institute for Advanced Study in
Computational Engineering Science (AICES), July 31 – August 5.

13. , King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathemati-
cal Sciences & Engineering Division, Thuwal, Saudi Arabia, October 24–30.

14. , December 11–17.

15. L. BLANK, Université de Franche-Comté, Laboratoire de Mathématiques de Besançon, France, January 23–
27.

16. C. BRÉE, Universitat Politecnica de Catalunya, Terrassa, Spain, July 10–14.

17. N. BUZUN, Moscow Institute of Physics and Technology, Department of Applied Mathematics and Control,
Dolgoprudny, Moscow Region, Russian Federation, May 12–31.

18. L. CAPONE, University of Oulu, Faculty of Technology, Finland, November 7, 2016 – January 31, 2017.

19. , EFD Induction AS, Skien, Norway, July 10–13.

20. P.-É. DRUET, Czech Academy of Sciences, Institute of Mathematics, Department of Evolution Differential
Equations (EDE), Prague, January 9–13.

21. P. DVURECHENSKY, Russian Academy of Sciences, Kharkevich Institute for Information Transmission Prob-
lems, PreMoLab, Moscow, July 28 – August 15.

22. , October 30 – November 10.

23. M. EIGEL, Institut National de Recherche en Informatique et en Automatique (INRIA), Team SERENA, Paris,
France, May 29 – June 2.

24. S. EYDAM, University of Belgrade, Institute of Physics Belgrade, Serbia, September 4 – October 2.

25. A. GONZÁLEZ CASANOVA SOBERÓN, University of Oxford, Mathematical Institute, UK, January 16–26.

26. , Johann Wolfgang Goethe-Universität Frankfurt, Institut für Mathematik, March 19–24.

5Only stays of more than three days are listed.
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27. R. HENRION, Université de Bourgogne, Département de Mathématiques, Dijon, France, October 17–27.

28. M. HINTERMÜLLER, Hong Kong Polytechnic University, Department of Applied Mathematics, China, May 27 –
June 2.

29. , Chinese Academy of Sciences, State Key Laboratory of Scientific and Engineering Computing, Bei-
jing, China, June 3–9.

30. , Isaac Newton Institute, organization of Trimester Program “Variational Methods and Effective Algo-
rithms for Imaging and Vision”, Cambridge, UK, August 28–31.

31. , September 4–8.

32. , September 13–18.

33. , September 26 – October 1.

34. , October 14–17.

35. , October 25–28.

36. , October 30 – November 5.

37. , November 6–9.

38. , December 3–11.

39. D. HÖMBERG, Fudan University, School of Mathematical Sciences, Shanghai, China, March 6–10.

40. , Adjunct Professorship, Norwegian University of Science and Technology, Department of Mathemat-
ical Sciences, Trondheim, Norway, March 20–29.

41. , October 20 – November 10.

42. B. JAHNEL, Ludwig-Maximilians-Universität München, Fakultät für Mathematik, Informatik und Statistik,
May 31 – June 6.

43. , August 4–16.

44. V. JOHN, Indian Institute of Science, Supercomputer Education and Research Centre, Bangalore, India,
March 7–16.

45. , Universidad Autónoma de Madrid, Departamento de Matemáticas, Spain, April 2–7.

46. , Beijing Computational Science Research Center, Applied and Computational Mathematics, China,
May 9–19.

47. W. KÖNIG, University of California, Los Angeles, Department of Mathematics, USA, January 14–27.

48. TH. KOPRUCKI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Mathematik, Erlangen, Jan-
uary 16–19.

49. , May 15–18.

50. M. LANDSTORFER, Tel Aviv University, School of Physics and Astronomy, Israel, June 20–26.

51. M. LIERO, Universität Dortmund, Institut für Mathematik, November 28 – December 1.

52. P. MATHÉ, Technische Universität Chemnitz, Fakultät für Mathematik, September 25–29.

53. , Fudan University, School of Mathematical Sciences, China, November 14 – December 6.

54. M. MAURELLI, Université de Nice Sophia-Antipolis, Laboratoire Jean Alexandre Dieudonné, France, Septem-
ber 25 – October 6.

55. , Università di Pisa, Dipartimento di Matematica, Italy, December 17–20.

56. A. MIELKE, University of Pavia, Department of Mathematics, Italy, March 20–24.
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57. , University College Cork, School of Mathematical Science, Ireland, September 6–15.

58. CH. MUKHERJEE, Courant Institute of Mathematical Sciences, Department of Mathematics, New York, USA,
March 14–23.

59. O. OMEL’CHENKO, University of Belgrade, Institute of Physics, Serbia, May 2–6.

60. , University of California at Berkeley, Department of Physics, USA, May 15–19.

61. K. PAPAFITSOROS, Isaac Newton Institute, Trimester Program “Variational Methods and Effective Algorithms
for Imaging and Vision”, Cambridge, UK, October 7 – November 14.

62. D. PESCHKA, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy, December 4–8.

63. P. PIGATO, École Polytechnique, Centre de Mathématiques Appliquées, Palaiseau, France, July 10–14.

64. , Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Italy, Septem-
ber 24–30.

65. J. POLZEHL, University of Minnesota, School of Statistics (IRSA), Minneapolis, USA, April 24 – May 17.

66. , University of Cambridge, Isaac Newton Institute, UK, October 23 – November 10.

67. , November 27 – December 13.

68. M. RADZIUNAS, Monocrom S.L., Barcelona, Spain, November 5–8.

69. M. REDMANN, University of Bath, Department of Mathematical Sciences, UK, November 6–10.

70. J. REHBERG, Technische Universität Darmstadt, Fachbereich Mathematik, November 7–11.

71. D.R.M. RENGER, University of Bath, Department of Mathematical Sciences, UK, April 24 – May 1.

72. , Universität Regensburg, Fakultät für Mathematik, July 27 – August 7.

73. H. SI, Beihang University, School of Mathematics and Systems Science, Beijing, China, January 2–13.

74. , Beijing Computational Science Research Center, China, July 24 – August 6.

75. , Dalian University, School of Software and Technology, China, August 7–18.

76. , Beijing Computational Science Research Center, China, November 27 – December 8.

77. R. SOARES DOS SANTOS, University College London, Department of Mathematics, UK, June 12–18.

78. , Université Claude Bernard Lyon 1, Institut Camille Jordan, France, February 1–6.

79. , New York University Shanghai, Institute of Mathematical Sciences, China, March 12 – April 2.

80. , Leiden University, Institute of Mathematics, Netherlands, October 8–11.

81. V. SPOKOINY, Russian Academy of Sciences, Kharkevich Institute for Information Transmission Problems,
PreMoLab, Moscow, February 1–9.

82. , February 12–25.

83. , April 3–7.

84. , May 16–20.

85. , June 5–10.

86. , October 23–27.

87. , November 25 – December 2.

88. A. SUVORIKOVA, Russian Academy of Sciences, Kharkevich Institute for Information Transmission Problems,
Moscow, April 3 – June 14.
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89. , Université Paul-Sabatier, Institut de Mathématiques de Toulouse, France, November 13 – Decem-
ber 8.

90. , Russian Academy of Sciences, Kharkevich Institute for Information Transmission Problems,
Moscow, December 18, 2017 – January 5, 2018.

91. K. TABELOW, University of Cambridge, Isaac Newton Institute, UK, October 30 – November 3.

92. M. THOMAS, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy, February 16–23.

93. , Università di Brescia, Dipartimento di Matematica, Italy, February 28 – March 3.

94. , University of Pavia, Department of Mathematics, Italy, May 21–24.

95. , Erwin Schrödinger Center, Vienna, Austria, June 10–13.

96. W. VAN ZUIJLEN, Delft University of Technology, Faculty Electrical Engineering, Mathematics and Computer
Science, Netherlands, May 3–8.

97. , Leiden University, Institute of Mathematics, Netherlands, October 18–23.

98. U. WILBRANDT, Indian Institute of Science, Supercomputer Education and Research Centre, Bangalore,
March 7–16.
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A.10 Academic Teaching6

Winter Semester 2016/2017

1. L. RECKE, U. BANDELOW, Mathematische Modelle der Photonik (research seminar), Humboldt-Universität zu
Berlin/WIAS Berlin, 2 SWS.

2. M. EIGEL, Tensor Product Approximation in Uncertainty Quantification (lecture), Technische Universität
Berlin, 2 SWS.

3. P. FRIZ, Rough Paths and Regularity Structures (lecture), Technische Universität Berlin, 2 SWS.

4. D. BECHERER, J. BLATH, P. FRIZ, W. KÖNIG, ET AL., Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar),
Humboldt-Universität zu Berlin/Technische Universität Berlin/WIAS Berlin, 2 SWS.

5. J. FUHRMANN, Wissenschaftliches Rechnen (Scientific Computing) (lecture), Technische Universität Berlin,
4 SWS.

6. A. GLITZKY, A. MIELKE, J. SPREKELS, Nichtlineare partielle Differentialgleichungen (Langenbach-Seminar)
(senior seminar), WIAS Berlin/Humboldt-Universität zu Berlin, 2 SWS.

7. M. HINTERMÜLLER, Nichtlineare Optimierung (lecture), Humboldt-Universität zu Berlin, 4 SWS.

8. M. HINTERMÜLLER, C. SCHILLINGS, Joint Research Seminar on Nonsmooth Variational Problems and Operator
Equations / Mathematical Optimization (research seminar), Humboldt-Universität zu Berlin/WIAS Berlin,
2 SWS.

9. D. HÖMBERG, Nichtlineare Optimierung (seminar), Technische Universität Berlin, 2 SWS.

10. V. JOHN, Numerik II (lecture), Freie Universität Berlin, 4 SWS.

11. J. BLATH, W. KÖNIG, Stochastic Processes in Physics and Biology (senior seminar), Technische Universität
Berlin, 2 SWS.

12. M. MAURELLI, Numerische Mathematik II für Ingenieure (practice), Technische Universität Berlin, 2 SWS.

13. A. MIELKE, Analysis I* (lecture), Humboldt-Universität zu Berlin, 5 SWS.

14. V. SPOKOINY, Modern Methods in Applied Stochastics and Nonparametric Statistics (seminar), Humboldt-
Universität zu Berlin/WIAS Berlin, 2 SWS.

15. V. SPOKOINY, W. HÄRDLE, M. REISS, G. BLANCHARD, Mathematical Statistics (research seminar), Humboldt-
Universität zu Berlin, 2 SWS.

16. H. STEPHAN, Funktionalanalytische Methoden in der klassischen Physik (lecture), Humboldt-Universität zu
Berlin, 2 SWS.

17. , Funktionalanalytische Methoden in der klassischen Physik (practice), Humboldt-Universität zu
Berlin, 1 SWS.

18. K. TABELOW, Mathematik (seminar), Steinbeis-Hochschule Berlin, 2 SWS.

19. M. THOMAS, Evolutionary Gamma-Convergence in Continuum Mechanics (seminar), Humboldt-Universität
zu Berlin, 2 SWS.

20. M. WOLFRUM, B. FIEDLER, P. GUREVICH, Nonlinear Dynamics (senior seminar), Freie Universität Berlin/WIAS
Berlin, 2 SWS.

6SWS = semester periods per week
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Summer Semester 2017

1. U. BANDELOW, Mathematische Modelle der Photonik (research seminar), Humboldt-Universität zu
Berlin/WIAS Berlin, 2 SWS.

2. A. CAIAZZO, Analysis 1 (lecture), Freie Universität Berlin, 4 SWS.

3. , Analysis 1 (practice), Freie Universität Berlin, 2 SWS.

4. P. FARRELL, Numerical Mathematics II (lecture), Technische Universität Hamburg-Harburg, 4 SWS.

5. , Numerical Solution of ODEs (lecture), Technische Universität Hamburg-Harburg, 4 SWS.

6. P. FRIZ, Rough Analysis and Quantitative Finance (seminar), Technische Universität Berlin, 2 SWS.

7. D. BECHERER, J. BLATH, P. FRIZ, W. KÖNIG, ET AL., Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar),
Humboldt-Universität zu Berlin/Technische Universität Berlin/WIAS Berlin, 2 SWS.

8. A. GLITZKY, A. MIELKE, J. SPREKELS, Nichtlineare partielle Differentialgleichungen (Langenbach-Seminar)
(senior seminar), WIAS Berlin/Humboldt-Universität zu Berlin, 2 SWS.

9. R. HENRION, Optimierungsprobleme mit Wahrscheinlichkeitsrestriktionen (lecture), Humboldt-Universität
zu Berlin, 2 SWS.

10. , Optimierungsprobleme mit Wahrscheinlichkeitsrestriktionen (practice), Humboldt-Universität zu
Berlin, 2 SWS.

11. M. HINTERMÜLLER, Theorie und Verfahren der nichtglatten Optimierung (lecture), Humboldt-Universität zu
Berlin, 4 SWS.

12. , Joint Research Seminar on Nonsmooth Variational Problems and Operator Equations / Mathemati-
cal Optimization (research seminar), Humboldt-Universität zu Berlin/WIAS Berlin, 2 SWS.

13. D. HÖMBERG, Variationsrechnung und optimale Steuerung gewöhnlicher Differentialgleichungen (lecture),
Technische Universität Berlin, 4 SWS.

14. V. JOHN, Numerik III (lecture), Freie Universität Berlin, 4 SWS.

15. J. BLATH, W. KÖNIG, Stochastic Processes in Physics and Biology (senior seminar), Technische Universität
Berlin, 2 SWS.

16. M. MAURELLI, Maß- und Integrationstheorie (practice), Technische Universität Berlin, 2 SWS.

17. A. MIELKE, Analysis II* (lecture), Humboldt-Universität zu Berlin, 4 SWS.

18. V. SPOKOINY, Mathematische Statistik (lecture), Humboldt-Universität zu Berlin, 4 SWS.

19. , Modern Methods in Applied Stochastics and Nonparametric Statistics (seminar), Humboldt-
Universität zu Berlin/WIAS Berlin, 2 SWS.

20. , Mathematische Statistik (practice), Humboldt-Universität zu Berlin, 2 SWS.

21. V. SPOKOINY, W. HÄRDLE, M. REISS, G. BLANCHARD, Mathematical Statistics (seminar), Humboldt-Universität
zu Berlin, 2 SWS.

22. H. STEPHAN, Funktionalanalytische Methoden in der klassischen Physik II (lecture), Humboldt-Universität
zu Berlin, 2 SWS.

23. , Funktionalanalytische Methoden in der klassischen Physik II (practice), Humboldt-Universität zu
Berlin, 1 SWS.

24. K. TABELOW, Mathematik (seminar), Steinbeis-Hochschule Berlin, 2 SWS.

25. M. THOMAS, Partielle Differentialgleichungen (lecture), Humboldt-Universität zu Berlin, 4 SWS.
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26. M. WOLFRUM, B. FIEDLER, P. GUREVICH, Nonlinear Dynamics (senior seminar), Freie Universität Berlin/WIAS
Berlin, 2 SWS.

Winter Semester 2017/2018

1. U. BANDELOW, Mathematische Modelle der Photonik (research seminar), Humboldt-Universität zu
Berlin/WIAS Berlin, 2 SWS.

2. P. FARRELL, Numerical Mathematics I (lecture), Technische Universität Hamburg-Harburg, 4 SWS.

3. , Numerical Solution of PDEs (lecture), Technische Universität Hamburg-Harburg, 4 SWS.

4. P. FRIZ, Oberseminar Rough Paths, Stochastic Partial Differential Equations and Related Topics (senior sem-
inar), Technische Universität Berlin, 2 SWS.

5. , Rough Analysis and Quantitative Finance (seminar), Technische Universität Berlin, 2 SWS.

6. D. BECHERER, J. BLATH, P. FRIZ, W. KÖNIG, ET AL., Berliner Kolloquium Wahrscheinlichkeitstheorie (seminar),
Humboldt-Universität zu Berlin/Technische Universität Berlin/WIAS Berlin, 2 SWS.

7. J. FUHRMANN, Wissenschaftliches Rechnen (lecture), Technische Universität Berlin, 4 SWS.

8. A. GLITZKY, Einführung in die Kontrolltheorie und optimale Steuerung (lecture), Humboldt-Universität zu
Berlin, 2 SWS.

9. , Einführung in die Kontrolltheorie und optimale Steuerung (practice), Humboldt-Universität zu
Berlin, 1 SWS.

10. A. GLITZKY, A. MIELKE, J. SPREKELS, Nichtlineare partielle Differentialgleichungen (Langenbach-Seminar)
(senior seminar), WIAS Berlin/Humboldt-Universität zu Berlin, 2 SWS.

11. M. HINTERMÜLLER, A. KRÖNER, Joint Research Seminar on Nonsmooth Variational Problems and Operator
Equations / Mathematical Optimization (research seminar), Humboldt-Universität zu Berlin/WIAS Berlin,
2 SWS.

12. D. HÖMBERG, Optimization II – PDE-Constrained Optimal Control (13 two-hour lectures from Oct. 23 to Nov.
10, 2017) (lecture), Norwegian University of Science and Technology, Trondheim, – SWS.

13. B. JAHNEL, Analysis I und Lineare Algebra für Ingenieurwissenschaften (lecture), Technische Universität
Berlin, 4 SWS.

14. V. JOHN, Numerik IV: Finite-Elemente-Methoden II (Strömungsmechanik) (lecture), Freie Universität Berlin,
2 SWS.

15. , Numerik IV: Finite-Elemente-Methoden II (Strömungsmechanik) (practice), Freie Universität Berlin,
2 SWS.

16. O. KLEIN, Mathematische Modellierung von Hystereseeffekten (lecture), Humboldt-Universität zu Berlin,
2 SWS.

17. , Mathematische Modellierung von Hystereseeffekten (practice), Humboldt-Universität zu Berlin,
1 SWS.

18. W. KÖNIG, Analysis I für Mathematiker (lecture), Technische Universität Berlin, 4 SWS.

19. J. BLATH, W. KÖNIG, Stochastic Processes in Physics and Biology (senior seminar), Technische Universität
Berlin, 2 SWS.

20. M. LIERO, Optimaler Transport und Wasserstein-Gradientenflüsse (lecture), Humboldt-Universität zu Berlin,
2 SWS.
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21. , Optimaler Transport und Wasserstein-Gradientenflüsse (practice), Humboldt-Universität zu Berlin,
1 SWS.

22. O. MARQUARDT, Mathematisch-physikalische Grundlagen, Screen Based Media (BA) (lecture), Beuth
Hochschule für Technik Berlin, 2 SWS.

23. , Brückenkurs Physik für Elektrotechnik und Mechatronik (10 two-hour lectures from Sept. 25 to 29,
2017) (seminar), Beuth Hochschule für Technik Berlin, – SWS.

24. M. MAURELLI, Fortgeschrittene Themen der Stochastik – Regularization by Noise (lecture), Technische Uni-
versität Berlin, 2 SWS.

25. CH. MERDON, Numerik partieller Differentialgleichungen (lecture), Humboldt-Universität zu Berlin, 4 SWS.

26. A. MIELKE, Analysis III (lecture), Humboldt-Universität zu Berlin, 4 SWS.

27. J.G.M. SCHOENMAKERS, Stochastische Finanzmathematik I (lecture), Humboldt-Universität zu Berlin, 4 SWS.

28. V. SPOKOINY, Modern Methods in Applied Stochastics and Nonparametric Statistics (seminar), Humboldt-
Universität zu Berlin/WIAS Berlin, 2 SWS.

29. V. SPOKOINY, W. HÄRDLE, M. REISS, G. BLANCHARD, Mathematical Statistics (research seminar), Humboldt-
Universität zu Berlin, 2 SWS.

30. K. TABELOW, Mathematik (seminar), Steinbeis-Hochschule Berlin, 2 SWS.

31. M. THOMAS, Nichtlineare partielle Differentialgleichungen (lecture), Humboldt-Universität zu Berlin,
4 SWS.

32. , Nichtlineare partielle Differentialgleichungen (practice), Humboldt-Universität zu Berlin, 2 SWS.

33. B. WAGNER, Asymptotische Analysis (lecture), Technische Universität Berlin, 4 SWS.

34. M. WOLFRUM, B. FIEDLER, Nonlinear Dynamics (senior seminar), Freie Universität Berlin/WIAS Berlin,
2 SWS.
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A.11 Visiting Scientists7

A.11.1 Guests

1. L. ADAM, Humboldt-Universität zu Berlin, Institut für Mathematik, January 1 – May 31.

2. ST. ADAMS, University of Warwick, Mathematics Institute, Coventry, UK, June 5–9.

3. L. ADAMYAN, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Re-
search Training Group (IRTG) 1792 “High Dimensional Non Stationary Time Series”, Berlin, January 1 –
December 31.

4. R. ADAR, Tel Aviv University, School of Physics and Astronomy, Israel, January 24–28.

5. I. BAČIĆ, University of Belgrade, Institute of Physics Belgrade, Scientific Computing Laboratory, Serbia,
November 3–30.

6. CH. BEN HAMMOUDA, King Abdullah University of Science and Technology (KAUST), Applied Mathematics
and Computational Science, Thuwal, Saudi Arabia, July 10–14.

7. L. BERLYAND, Pennsylvania State University, Department of Mathematics, University Park, PA, USA, Octo-
ber 27 – November 2.

8. CH. BICK, University of Exeter, Department of Mathematics, UK, January 8–11.

9. A. BOITSEV, St. Petersburg National University of Information Technologies, Mechanics and Optics, De-
partment of Higher Mathematics, St. Petersburg, Russian Federation, November 13–17.

10. E. BOLTHAUSEN, Universität Zürich, Institut für Mathematik, Switzerland, March 5–9.

11. R.I. BOT, Universität Wien, Fakultät für Mathematik, Austria, October 11–14.

12. M. BROKATE, Technische Universität München, Zentrum Mathematik, Garching, October 11–14.

13. E.A. CARLEN, Rutgers University, Department of Mathematics, Piscataway, USA, November 21–26.

14. A. CARPENTIER, Universität Potsdam, Institut für Mathematik, January 1 – December 31.

15. D. CHAPELLE, Inria Saclay – Ile de France, Mathematical and Mechanical Modeling with Data Interaction
in Simulations for Medicine, Palaiseau, France, September 15–18.

16. J. CHEN, Zheijian University, Center for Engineering & Scientific Computation, Hangzhou, China, April 8–
13.

17. D. CHETVERIKOV, University of California at Los Angeles (UCLA), Department of Economics, USA, June 20–
24.

18. R. ČIEGIS, Vilnius Gediminas Technical University, Department of Mathematical Modeling, Lithuania,
September 17–29.

19. , December 4–8.

20. P. COLLI, Università di Pavia, Dipartimento di Matematica “F. Casorati”, Italy, February 26 – March 3.

21. P. DAS, EFD Induction AS, Skien, Norway, March 5–21.

22. , May 2 – July 31.

23. , November 6, 2017 – January 31, 2018.

24. F. DASSI, Politecnico di Milano, Laboratory for Modeling and Scientific Computing MOX, Italy, January 21–
31.

7Only stays of more than three days are listed.
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25. E. DAVOLI, University of Vienna, Faculty of Mathematics, Austria, May 9–12.

26. P.-O. DEHAYE, Universität Zürich, Institut für Mathematik, Switzerland, March 17–25.

27. F. DEN HOLLANDER, Leiden University, Mathematical Institute, Netherlands, April 19–22.

28. G. DONG, Humboldt-Universität zu Berlin, Institut für Mathematik, September 1, 2017 – Decem-
ber 31, 2018.

29. A. DREWITZ, Universität zu Köln, Mathematisches Institut, July 31 – August 3.

30. K. EFIMOV, Humboldt-Universität zu Berlin, Institut für Mathematik, October 1 – December 31.

31. I. FRANOVIC, University of Belgrade, Institute of Physics Belgrade, Serbia, June 19 – July 2.

32. , November 3–30.

33. M. FREITAG, University of Bath, Department of Mathematical Sciences, UK, April 10–21.

34. V. GARANZHA, Russian Academy of Sciences, Federal Research Center of Computer Science and Control,
Moscow, September 13–16.

35. N. GOERIGK, Elektronische Fahrwerksysteme GmbH, Gaimersheim, February 6–10.

36. V. GUIGUES, Fundação Getúlio Vargas (FGV), School of Applied Mathematics, Rio de Janeiro, Brazil, Febru-
ary 5–9.

37. S. HAJIAN, Humboldt-Universität zu Berlin, Institut für Mathematik, January 1 – December 31.

38. H. HARDERING, Technische Universität Dresden, Institut für Numerische Mathematik, January 17–20.

39. L. HELTAI, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathematical Analysis, Modeling,
and Applications, Trieste, Italy, February 1 – April 30.

40. CH. HIRSCH, Ludwig-Maximilians-Universität München, Mathematisches Institut, July 23–28.

41. , October 9–12.

42. B. HOFMANN, Technische Universität Chemnitz, Fakultät für Mathematik, March 27–31.

43. J. HOLLEY, Robert Bosch GmbH, April 1, 2017 – March 31, 2020.

44. K. ITO, North Carolina State University, Department of Mathematics, Raleigh, USA, May 1–13.

45. D. IVANOV, EFD Induction AS, Skien, Norway, May 7–12.

46. T. KEIL, Humboldt-Universität zu Berlin, Institut für Mathematik, January 1 – May 31.

47. G. KITAVTSEV, University of Bristol, School of Mathematics, UK, May 20–23.

48. Y. KLOCHKOV, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, International Re-
search Training Group (IRTG) 1792 “High Dimensional Non Stationary Time Series”, January 1 – Decem-
ber 31.

49. E. KNOBLOCH, University of California, Department of Physics, Berkeley, USA, March 31 – April 5.

50. M. KOHLHASE, Friedrich-Alexander-Universität Erlangen-Nürnberg, Informatik, Wissensrepräsentation
und -verarbeitung, Erlangen, March 20–24.

51. M. KRAFT, University of Cambridge, Department of Chemical Engineering and Biotechnology, UK, July 17 –
August 14.

52. C. KREISBECK, Universiteit Utrecht, Mathematical Institute, Netherlands, May 29 – June 2.

53. A. KRÖNER, Humboldt-Universität zu Berlin, Institut für Mathematik / CMAP, Ecole Polytechnique, Paris-
Saclay, May 4 – September 30.
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54. A. KROSHNIN, Russian Academy of Sciences, Moscow Institute of Physics and Technology, Dolgoprudny,
Moscow Region, May 1–7.

55. CH. KÜLSKE, Ruhr-Universität Bochum, Fakultät für Mathematik, May 23–26.

56. N.Z. LARBI YOUCEF, Università di Torino, Dipartimento di Matematica, Italy, December 11–15.

57. N. LEI, Dalian University of Technology, School of Software and Technology, China, September 13–17.

58. C. MACNAMARA, University of St Andrews, School of Mathematics & Statistics, UK, August 6–9.

59. B. MATEJCZYK, University of Warwick, Mathematics Institute, Coventry, UK, December 11–16.

60. ST. MELCHIONNA, University of Vienna, Faculty of Mathematics, Austria, March 1–8.

61. P. MÖRTERS, Universität zu Köln, Mathematisch-Naturwissenschaftliche Fakultät, August 28 – Septem-
ber 1.

62. CH. MUKHERJEE, Universität Münster, Fachbereich Mathematik und Informatik, April 1 – May 31.

63. D. MÜLLER, Friedrich-Alexander-Universität Erlangen-Nürnberg, Informatik, Wissensrepräsentation und
-verarbeitung, Erlangen, March 20–24.

64. , November 5–8.

65. L.O. MÜLLER, Norwegian University of Science and Technology, Department of Structural Engineering,
Trondheim, February 28 – March 3.

66. A. MÜNCH, University of Oxford, Oxford Center for Industrial and Applied Mathematics, Mathematical In-
stitute, UK, November 15–20.

67. J. MURA, Pontificia Universidad Católica de Chile, Centro de Imágenes Biomédicas, Santiago, January 31 –
February 3.

68. O. MUSCATO, Università degli Studi di Catania, Dipartimento di Matematica e Informatica (DMI), Italy,
July 30 – August 11.

69. A. NAUMOV, Skolkovo Institute of Science and Technology (Skoltech), Center for Computational Data-
Intensive Science and Engineering (CDISE), Moscow, Russian Federation, January 15–21.

70. , June 27 – July 2.

71. P. NELSON, Johannes Gutenberg-Universität, Institut für Mathematik, Mainz, June 5–9.

72. D. NOLTE, Universidad de Chile, Center for Mathematical Modeling, Santiago, July 24 – August 23.

73. J. NOVO, Universidad Autónoma de Madrid, Instituto de Ciencias Matemáticas, Spain, November 6–10.

74. CH. ONYI, Nnamdi Azikiwe University Awka, Department of Mathematics, Awka, Nigeria, September 26 –
December 31.

75. J. OUTRATA, Academy of Sciences of the Czech Republic, Institute of Information Theory and Automation,
Prague, October 11–14.

76. M. PATRIARCA, University of Rome Tor Vergata, Electronic Engineering Department, Italy, August 15 –
November 15.

77. T.D.P. PEIXOTO, University of Bath, Department of Mathematical Sciences, UK, August 25 – September 1.

78. G. PITTON, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathematical Analysis, Modeling,
and Applications, Trieste, Italy, February 1 – March 31.

79. W. POLONIK, University of California at Davis, Department of Statistics, USA, June 20 – July 15.

80. I.Y. POPOV, St. Petersburg National Research University of Information Technologies, Mechanics and Op-
tics, Department of Higher Mathematics, Russian Federation, January 30 – February 3.
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81. F. RABE, Jacobs University, Computer Science, Bremen, March 21–24.

82. C. RAUTENBERG, Humboldt-Universität zu Berlin, Institut für Mathematik, January 1 – November 30.

83. L. REBHOLZ, Clemson University, Department of Mathematical Sciences, USA, October 15–21.

84. Y. REN, Dalian University of Technology, School of Software Technology, China, August 31 – September 30.

85. E. ROCCA, Università degli Studi di Pavia, Dipartimento di Matematica, Italy, May 2–5.

86. R. ROSSI, Università di Brescia, Dipartimento di Matematica, Italy, May 14–19.

87. T. ROUBÍČEK, Czech Academy of Sciences, Institute of Thermomechanics, Prague, October 8 – November 8.

88. B. SCHWEIZER, Technische Universität Dortmund, Fakultät für Mathematik, October 4–7.

89. O. SEKULOVIC, Crnogorski Telecom, Podgorica, Montenegro, October 8–15.

90. J. SIEBER, University of Exeter, College of Engineering, Mathematics and Physical Sciences, UK, October 4–
20.

91. D. SILVESTER, University of Manchester, Faculty of Science and Engineering, UK, April 3–7.

92. S. SIMONELLA, Technische Universität München, Zentrum Mathematik, November 20–23.

93. A. SOBOLEVSKIY, Russian Academy of Sciences, Institute for Information Transmission Problems (Kharke-
vich Institute), Moscow, May 5–10.

94. Y. SUN, Humboldt-Universität zu Berlin, Institut für Mathematik, October 18, 2017 – September 30, 2018.

95. J. TEN THIJE BOONKKAMP, Eindhoven University of Technology, Department of Mathematics and Computer
Science, Netherlands, March 27 – April 2.

96. I. THOMPSON, University of Bath, Department of Physics, UK, April 24–28.

97. R. TOADER, University of Udine, DIMI, Italy, July 9–15.

98. A. TORCINI, Université de Cergy–Pontoise, Laboratoire de Physique Théorique et Modélisation, France,
February 10–19.

99. D. TURAEV, Imperial College London, Department of Mathematics, UK, April 5–13.

100. V. ULYANOV, Lomonosov Moscow State University, Department of Mathematical Statistics, Probability The-
ory, Statistics, Russian Federation, January 15–21.

101. C. VISONE, Università degli Studi del Sannio, Dipartimento di Ingegneria, Benevento, Italy, May 28–31.

102. J. WEED, Massachusetts Institute of Technology, Department of Mathematics, Cambridge, USA, April 25–
28.

103. M. YAMAMOTO, University of Tokyo, Graduate School of Mathematical Sciences, Japan, January 27 – Febru-
ary 1.

104. , April 20–30.

105. N. ZHIVOTOVSKIY, Skolkovo Institute of Science and Technology, Skoltech Center for Computational Data-
Intensive Science and Engineering (CDISE), Moscow, Russian Federation, April 23–26.

A.11.2 Scholarship Holders

1. S. AFLATOUNIAN, K. N. Toosi University of Technology, Faculty of Electrical Engineering, Tehran, Iran, DAAD-
IAESTE Fellowship (International Association for the Exchange of Students for Technical Experience), De-
cember 1, 2017 – January 31, 2018.
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2. J.A. BRÜGGEMANN, Humboldt-Universität zu Berlin, Institut für Mathematik, Berlin Mathematical School,
January 1 – October 31.

3. A. FIEBACH, Berlin, EXIST Business Start-up Grant, Federal Ministry for Economic Affairs and Energy,
June 1, 2017 – April 30, 2018.

4. K. GÄRTNER, Berlin, EXIST Business Start-up Grant, Federal Ministry for Economic Affairs and Energy,
May 1, 2017 – April 30, 2018.

5. A. JHA, Freie Universität Berlin, Institut für Mathematik, New Delhi, India, Berlin Mathematical School, Oc-
tober 1, 2017 – December 31, 2018.

6. L. KAMENSKI, Berlin, EXIST Business Start-up Grant, Federal Ministry for Economic Affairs and Energy,
May 1, 2017 – April 30, 2018.

7. T. KEIL, Humboldt-Universität zu Berlin, Institut für Mathematik, Berlin Mathematical School, January 1 –
May 15.

8. CH. ONYI, Humboldt-Universität zu Berlin, Institut für Mathematik, Berlin Mathematical School, October 1 –
December 31.

9. K. PAPAFITSOROS, University of Cambridge, Department of Applied Mathematics and Theoretical Physics,
UK, Humboldt Research Fellowship, April 1, 2016 – August 31, 2017.

10. H. SUN, Renmin University of China, Institute for Mathematical Sciences, Beijing, Humboldt Research Fel-
lowship, February 1, 2017 – January 31, 2018.

11. A. TOBIÁS, Technische Universität Berlin, Institut für Mathematik, Berlin Mathematical School, January 1 –
December 31.

12. P. VAGNER, Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic, Erasmus+
Traineeship, February 1, 2017 – February 28, 2018.

A.11.3 External Doctoral Candidates and Post-docs supervised by WIAS Collaborators

1. L. ADAMYAN, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, supervisor:
Prof. Dr. V. Spokoiny, International Research Training Group 1792 “High Dimensional Non Stationary
Time Series Analysis”, doctoral candidate, January 1 – December 31.

2. J.A. BRÜGGEMANN, Humboldt-Universität zu Berlin, Institut für Mathematik, supervisor:
Prof. Dr. M. Hintermüller, Berlin Mathematical School, doctoral candidate, January 1 – October 31.

3. P. DAS, Technische Universität Berlin, Institut für Mathematik, supervisor: Prof. Dr. D. Hömberg, European
Industrial Doctorate project MIMESIS, doctoral candidate, January 1 – December 31.

4. K. EFIMOV, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, supervisor:
Prof. Dr. V. Spokoiny, International Research Training Group 1792 “High Dimensional Non Stationary
Time Series Analysis”, doctoral candidate, January 1 – September 1.

5. T. GONZÁLEZ GRANDÓN, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, su-
pervisor: Dr. R. Henrion, Berlin Mathematical School, doctoral candidate, January 1 – December 31.

6. J. HOLLEY, Humboldt-Universität zu Berlin, Institut für Mathematik, supervisor: Prof. Dr. M. Hintermüller,
Robert Bosch GmbH, doctoral candidate, April 1 – December 31.

7. A. JHA, Freie Universität Berlin, Institut für Mathematik, supervisor: Prof. Dr. V. John, Berlin Mathematical
School, doctoral candidate, October 1 – December 31.

8. T. KEIL, Humboldt-Universität zu Berlin, Institut für Mathematik, supervisor: Prof. Dr. M. Hintermüller,
Berlin Mathematical School, doctoral candidate, January 1 – May 31.
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9. E. KLOCHKOV, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, supervisor:
Prof. Dr. V. Spokoiny, International Research Training Group 1792 “High Dimensional Non Stationary
Time Series Analysis”, doctoral candidate, January 1 – December 31.

10. CH. ONYI, Humboldt-Universität zu Berlin, Mathematisch-Natutwissenschaftliche Fakultät, supervisor:
Prof. Dr. M. Hintermüller, Berlin Mathematical School, doctoral candidate, October 1 – December 31.

11. M. PATRIARCA, University of Rome “Tor Vergata”, supervisors: Dr. P. Farrell, Dr. J. Fuhrmann, doctoral candi-
date, August 15 – November 15.

12. Y. REICHELT, Technische Universität Berlin, Institut für Mathematik, supervisor: Prof. Dr. D. Hömberg, Berlin
Mathematical School, doctoral candidate, February 1 – July 31.

13. S. RÖSEL, Humboldt-Universität zu Berlin, Institut für Mathematik, supervisor: Prof. Dr. M. Hintermüller,
doctoral candidate, January 1 – February 7.

14. A. STEPHAN, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, Institut für
Mathematik, supervisor: Prof. Dr. A. Mielke, Berlin Mathematical School, doctoral candidate, April 1 – De-
cember 31.

15. Y. SUN, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, supervisor:
Prof. Dr. V. Spokoiny, Berlin Mathematical School, doctoral candidate, January 1 – December 31.

16. A. TOBIÁS, Technische Universität Berlin, Institut für Mathematik, supervisor: Prof. Dr. W. König, Berlin
Mathematical School, doctoral candidate, January 1 – December 31.

17. A. ZEGHUZI, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, supervisor:
Dr. M. Radziunas, BMBF program EffiLAS: PLUS project, doctoral candidate, January 1 – December 31.
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A.12 Guest Talks
1. ST. ADAMS, University of Warwick, Mathematics Institute, Coventry, UK, Large deviations and concentra-

tion of scaling limits for weakly pinned integrated random walks, June 7.

2. A. ALI, Universität Hamburg, Fachbereich Mathematik, Global minima for semilinear optimal control prob-
lems, May 9.

3. E. AREVALO, Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Solitary waves in the
nonlinear Schrödinger equation with complex potentials, February 16.

4. B. AZMI, Karl-Franzens-Universität Graz, Institut für Mathematik und Wissenschaftliches Rechnen, Austria,
On the stabilizability of infinite dimensional systems via receding horizon control, May 5.

5. F. BACCELLI, University of Texas at Austin, Department of Mathematics, USA, Stochastic geometry and
queuing in wireless networks, July 10.

6. A.M. BADLYAN, Technische Universität Berlin, Institut für Mathematik, On the port-Hamiltonian structure
of the Navier–Stokes equations for reactive flows, January 26.

7. CH. BEN HAMMOUDA, King Abdullah University of Science and Technology (KAUST), Applied Mathematics
and Computational Science, Thuwal, Saudi Arabia, Multilevel hybrid split-step implicit tau-leap, July 11.

8. L. BERLYAND, Pennsylvania State University, Department of Mathematics, University Park, USA, Hierarchy
of PDE models of cell motility, October 30.

9. CH. BICK, University of Exeter, Department of Mathematics, UK, From weak chimeras to switching dynam-
ics of localized frequency synchronization patterns, January 10.

10. R. BLOSSEY, Université de Lille 1 & CNRS, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) CNRS
UMR 8576, Villeneuve d’Ascq, France, Beyond Poisson–Boltzmann: Charge correlation effects in DNA
adsorption and transport through nanopores, May 22.

11. A. BOITSEV, St. Petersburg National University of Information Technologies, Mechanics and Optics, Depart-
ment of Higher Mathematics, Russian Federation, Boundary triplets, tensor products and point contacts
to reservoirs, November 15.

12. A. BOVIER, Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Angewandte Mathematik, Adap-
tive dynamics, diploid models, and the escape from selection, July 19.

13. E. BURNAEV, Skolkovo Institute of Science and Technology, Center for Computational and Data-Intensive
Science and Engineering, Moscow Region, Russian Federation, Minimax approach to variable fidelity data
interpolation, March 28.

14. C. BUTUCEA, Université Paris-Est Marne-la-Vallée, Laboratoire d’Analyse et de Mathématiques Appliquées,
France, Local asymptotic equivalence for quantum models, May 3.

15. A. CERETANI, Humboldt-Universität zu Berlin, Institut für Mathematik, Anomalous diffusion with free
boundaries, November 27.

16. D. CHAE, Chung-Ang University, Seoul, Korea (Republic of), On the blow-up problem for the incompressible
Euler equation, August 9.

17. D. CHAPELLE, Inria Saclay – Ile de France, Mathematical and Mechanical Modeling with Data Interaction
in Simulations for Medicine, Palaiseau, France, Biomechanical modeling of the heart, and cardiovascular
system — From sarcomeres to organ/system, with experimental assessments and patient-specific clinical
validations, September 18.

18. E. CHARKALUK, Ecole Polytechnique, Laboratoire de Mécanique des Solides (LMS) – UMR 7649, Palaiseau,
France, Fatigue of metallic additive manufactured structures: What can we learn from other manufactur-
ing processes?, November 21.
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19. J. CHEN, Zheijian University, Center for Engineering & Scientific Computation, Hangzhou, China, Automatic
and parallel mesh generation: Recent advances, April 11.

20. D. CHETVERIKOV, University of California at Los Angeles (UCLA), Department of Economics, USA, On cross-
validated lasso, June 21.

21. M. CICUTTIN, Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scientifique, l’École des
Ponts ParisTech, Marne-la-Vallée, France, Implementation of discontinuous skeletal methods on arbitrary-
dimensional, polytopal meshes using generic programming, March 16.

22. R. ČIEGIS, Vilnius Gediminas Technical University, Department of Mathematical Modeling, Lithuania, Nu-
merical simulation of nonlocal delayed feedback controller for some new smart bioreactors, December 5.

23. CH. CLASON, Universität Duisburg-Essen, Fakultät für Mathematik, Essen, Convex relaxation of hybrid
discrete-continuous control problems, March 29.

24. P. COLLI, Università di Pavia, Dipartimento di Matematica “F. Casorati”, Italy, About a non-smooth regular-
ization of a forward-backward parabolic equation, March 1.

25. F. COMPTE, Université Paris Descartes, UFR de Mathématiques et Informatique, Paris, France, Laguerre
basis for inverse problems related to nonnegative random variables, February 1.

26. M. CUTURI, École Nationale de la Statistique et de l’Administration Économique, Centre de Recherche en
Économie et Statistique, Malakoff, France, A review of regularized optimal transport and applications to
Wasserstein barycenters, May 10.

27. F. DASSI, Politecnico di Milano, Laboratory for Modeling and Scientific Computing MOX, Italy, The virtual
element method in three dimensions, January 26.

28. M. DEMUTH, Technische Universität Clausthal, Institut für Mathematik, On eigenvalues of non-selfadjoint
operators: A comparison of two approaches, March 29.

29. F. DEN HOLLANDER, Leiden University, Mathematical Institute, Netherlands, Random walks on dynamic
random graphs, April 19.

30. G. DONG, Humboldt-Universität zu Berlin, Institut für Mathematik, Regularization methods and nonlinear
PDEs for solving inverse and imaging problems, December 21.

31. A. DREWITZ, Universität zu Köln, Mathematisches Institut, The maximal particle of branching RW in random
branching environment, August 2.

32. M. EIKERLING, Simon Fraser University, Department of Chemistry, Burnaby, Canada, Theory and modeling
of materials for electrochemical energy systems, February 9.

33. J.C. ESCANCIANO, Indiana University Bloomington, Department of Economics, USA, Quantile-regression
inference with adaptive control of size, May 31.

34. I. FRANOVIC, University of Belgrade, Institute of Physics Belgrade, Serbia, Bistability, rate oscillations and
slow rate fluctuations in networks of noisy neurons with coupling delay, June 27.

35. M. FROMONT-RENOIR, Université Rennes 2, Équipe de Statistique de l’IRMAR, France, Family-wise separa-
tion rates for multiple testing, January 25.

36. S. GANESAN, Indian Institute of Science, Department of Computational and Data Sciences, Bangalore,
Stabilized three-field formulation of viscoelastic fluid flows, June 1.

37. V. GARANZHA, Russian Academy of Sciences, Federal Research Center of Computer Science and Control,
Moscow, Construction of quasi-isometric elastic deformations in mesh generation problems, Septem-
ber 14.

38. A. GASSMANN, Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock, Abteilung Theorie
und Modellierung, Kühlungsborn, Fluid dynamics on icosahedral staggered grids, January 12.
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39. J.-F. GERBEAU, Centre de Recherche INRIA de Paris, France, Numerical methods for variability modeling
and biomarkers design, November 20.

40. D. GHOSHDASTIDAR, Universität Tübingen, Fachbereich Informatik, Two-sample hypothesis testing for in-
homogeneous random graphs, October 25.

41. I. GOLDSHEID, Queen Mary University of London, School of Mathematical Sciences, UK, Invariant measure
for random walks on random environments, July 5.

42. C. GRÄSER, Freie Universität Berlin, Fachbereich Mathematik und Informatik, Solving nonsmooth PDEs in
Dune, May 30.

43. V. GUIGUES, Fundação Getúlio Vargas (FGV), School of Applied Mathematics, Rio de Janeiro, Brazil, Hypoth-
esis testing and change point detection on controls of stochastic dynamical systems with independent
state and observation noises belonging to spherical families, February 7.

44. P. GUREVICH, Freie Universität Berlin, Institut für Mathematik, A short introduction to machine learning:
Towards (un)certainty quantification, May 23.

45. , Rattling in hysteretic reaction-diffusion systems, November 29.

46. L. GYÖRFI, Budapest University of Technology and Economics, Department of Computer Science and In-
formation Theory, Hungary, The role of machine learning in the nonparametric prediction of time series,
February 15.

47. A. HÄNEL, Leibniz Universität Hannover, Institut für Analysis, Spectral asymptotics for mixed problems
and for crack problems on infinite cylinders, February 1.

48. M. HANSS, Universität Stuttgart, Institut für Technische und Numerische Mechanik, Fuzzy arithmetic and
probability theory in uncertainty analysis – Unity in diversity, June 26.

49. H. HARDERING, Technische Universität Dresden, Institut für Numerische Mathematik, Gradient flows in
Riemannian manifolds space discretization by geodesic finite elements, January 18.

50. S.W. HAUGLAND, Technische Universität München, Physik-Department, Garching, What can we learn about
chimera states from minimal cluster dynamics?, April 27.

51. S. HEIDENREICH, Physikalisch-Technische Bundesanstalt, Modellierung und Simulation, Berlin, Uncer-
tainty quantification for nanometrology, January 10.

52. L. HELTAI, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathematical Analysis, Modeling,
and Applications, Trieste, Italy, Immersed Finite Element Methods for interface and fluid structure interac-
tion problems: An overview and some recent results, March 28.

53. , A numerical framework for optimal locomotion at low Reynolds numbers, April 11.

54. T. HULSHOF, University of Technology, Department of Mathematics and Computer Sciences, Eindhoven,
Netherlands, Higher order corrections for anisotropic bootstrap percolation, February 23.

55. K. ITO, North Carolina State University, Department of Mathematics, Raleigh, USA, Value function calculus
and applications, May 9.

56. C. KIRCH, Universität Magdeburg, Fakultät für Mathematik, Frequency domain likelihood approximations
for time series bootstrapping and Bayesian nonparametrics, May 24.

57. E. KNOBLOCH, University of California, Department of Physics, Berkeley, USA, Geostrophic turbulence and
the formation of large scale structure, April 4.

58. M. KRAFT, University of Cambridge, Department of Chemical Engineering and Biotechnology, UK, Moment
projection method for solving population balance equations, August 2.

59. A. KRÖNER, Humboldt-Universität zu Berlin, Institut für Mathematik / CMAP, Ecole Polytechnique, Paris-
Saclay, Optimal control of infinite dimensional systems, May 4.
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60. A. KROSHNIN, Russian Academy of Sciences, Moscow Institute of Physics and Technology, Dolgoprudny,
Moscow Region, Fréchet barycenters in the Monge–Kantorovich spaces, May 2.

61. CH. KÜHN, Technische Universität München, Fakultät Mathematik, Garching, Regularity structures and
fractional diffusion, April 19.

62. CH. KÜLSKE, Ruhr-Universität Bochum, Fakultät für Mathematik, Continuous spin models on annealed ran-
dom graphs: Modifying the modified mean-field exponents, May 24.

63. A. KYPRIANOU, University of Bath, Department of Mathematical Sciences, UK, Applied probability and real-
world impact, June 23.

64. K.F. LAM, Universität Regensburg, Fakultät für Mathematik, Diffuse interface models of tumor growth and
optimizing cancer treatment times, January 10.

65. N.Z. LARBI YOUCEF, Università di Torino, Dipartimento di Matematica, Italy, Probabilistic models for large
telecommunication systems, December 13.

66. R. LASARZIK, Technische Universität Berlin, Institut für Mathematik, Generalised solutions to the Ericksen–
Leslie model describing liquid crystal flow, November 8.

67. O. LASS, Technische Universität Darmstadt, Fachbereich Mathematik, Nonlinear robust optimization and
model order reduction with application to electric motor design, May 9.

68. K.J.H. LAW, Oak Ridge National Laboratory, Computer Science and Mathematics Division, and University of
Tennessee, Mathematics Department, Knoxville, TN, USA, Multilevel Monte Carlo for Bayesian inference,
July 28.

69. N. LEI, Dalian University of Technology, School of Software and Technology, China, Quadrilateral and
hexahedral mesh generation based on surface foliation theory, September 14.

70. J. LINN, Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM, Mathematische Methoden in
Dynamik und Festigkeit, Kaiserslautern, Simulation of flexible cables in car assembly, March 14.

71. CH. LÖBBERT, RWTH Aachen, Institut für Geometrie und Praktische Mathematik, Parallel arithmetic for
distributed tensors in the HT-format, November 28.

72. J.-M. LOUBES, Université Toulouse Paul Sabatier, Institut de Mathématiques de Toulouse, Equipe de Statis-
tique et Probabilités, France, Kantorovich distance based kernel for Gaussian processes: Estimation and
forecast, June 14.

73. D. LOUKREZIS, Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Low-rank
tensor decompositions for high-dimensional uncertainty quantification in electromagnetic field prob-
lems, June 20.

74. G. LUBE, Georg-August-Universität Göttingen, Institut für Numerische und Angewandte Mathematik,
Pressure-robust error estimates of exactly divergence-free FEM for time-dependent incompressible flows,
Part I, February 9.

75. M. MÄCK, Universität Stuttgart, Institut für Technische und Numerische Mechanik, Numerical implemen-
tation of fuzzy arithmetic in uncertainty analysis, June 27.

76. B. MATEJCZYK, University of Warwick, Mathematics Institute, Coventry, UK, Macroscopic models for ion
transport in nanoscale pores, December 14.

77. ST. MELCHIONNA, University of Vienna, Faculty of Mathematics, Austria, A variational approach to symme-
try, monotonicity and comparison for doubly-nonlinear equations, March 3.

78. S. MERINO-ACEITUNO, Imperial College London, Department of Mathematics, UK, Kinetic theory to study
emergent phenomena in biology: An example on swarming, February 7.

79. P. MÖRTERS, Universität zu Köln, Mathematisch-Naturwissenschaftliche Fakultät, Reinforced branching
processes, August 31.
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80. L.O. MÜLLER, Norwegian University of Science and Technology, Department of Structural Engineering,
Trondheim, A local time stepping solver for one-dimensional blood flow, March 2.

81. A. MÜNCH, University of Oxford, Oxford Center for Industrial and Applied Mathematics, Mathematical In-
stitute, UK, Asymptotic analysis of models involving surface diffusion, November 16.

82. J. MURA, Pontificia Universidad Católica de Chile, Centro de Imágenes Biomédicas, Santiago, An auto-
matic method to estimate 3D pulse wave velocity from 4D-flow MRI data, February 2.

83. O. MUSCATO, Università degli Studi di Catania, Dipartimento di Matematica e Informatica (DMI), Italy, The
evergreen Wigner transport equation, August 2.

84. A. NAUMOV, Skolkovo Institute of Science and Technology (Skoltech), Center for Computational Data-
Intensive Science and Engineering (CDISE), Moscow, Russian Federation, Bootstrap confidence sets for
spectral projectors of sample covariance, January 18.

85. TH. NIENDORF, Max-Delbrück-Center für Molekulare Medizin (MDC), Experimentelle Ultrahochfeld-MR,
Berlin, Explorations into ultrahigh field magnetic resonance – Where physics, mathematics, biology and
medicine meet, March 20.

86. J. NOVO, Universidad Autónoma de Madrid, Instituto de Ciencias Matemáticas, Spain, Quasi-optimal
methods to approximate the incompressible Navier–Stokes equations, November 7.

87. M. PAVELKA, Charles University, Mathematical Institute, Prague, Czech Republic, 42=GENERIC — Unified
Hamiltonian description of solids and fluids, November 30.

88. T.D.P. PEIXOTO, University of Bath, Department of Mathematical Sciences, UK, Statistical inference of net-
work structure and dynamics, August 28.

89. M. PELGER, Stanford University, Management Science & Engineering Department, USA, Estimating latent
asset-pricing factors, January 11.

90. A. PILIPENKO, Ukrainian National Academy of Sciences, Institute of Mathematics, Kiev, On a selection
problem for small noise perturbation of ODE in multidimensional case, April 26.

91. G. PITTON, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathematical Analysis, Model-
ing, and Applications, Trieste, Italy, Accelerating augmented and deflated Krylov space methods for
convection-diffusion problems, March 28.

92. W. POLONIK, University of California at Davis, Department of Statistics, USA, Statistical topological data
analysis: Rescaling the persistence diagram, July 12.

93. I.Y. POPOV, St. Petersburg National Research University of Information Technologies, Mechanics and Op-
tics, Department of Higher Mathematics, Russian Federation, Tunneling through periodic arrays of quan-
tum dots and spectral problems, February 2.

94. K. PROKSCH, Georg-August-Universität Göttingen, Institut für Mathematische Stochastik, Multiscale scan-
ning in inverse problems – With applications to nanobiophotonics, February 8.

95. J. PRÜSS, Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Critical spaces for quasilin-
ear evolution equations and applications, June 21.

96. L. REBHOLZ, Clemson University, Department of Mathematical Sciences, USA, On conservation laws of
Navier–Stokes Galerkin discretizations, October 19.

97. L. RECKE, Humboldt-Universität zu Berlin, Institut für Mathematik, Corrector estimates for singularly per-
turbed boundary value problems with nonsmooth data, January 11.

98. Y. REN, Dalian University of Technology, School of Software Technology, China, On tetrahedralisations
containing knotted and linked line segments, September 26.

99. E. ROCCA, Università degli Studi di Pavia, Dipartimento di Matematica, Italy, Optimal control in diffuse
interface models of tumor growth, May 4.
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100. , Diffuse interfaces in complex systems, June 15.

101. U. RÖMER, Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Stochastic
collocation with adjoint error control for uncertainty quantification in computational electromagnetics,
June 20.

102. R. ROSSI, Università di Brescia, Dipartimento di Matematica, Italy, In between Energetic and Balanced
Viscosity solutions of rate-independent systems: The Visco-Energetic concept, with some applications to
solid mechanics, May 17.

103. T. ROUBÍČEK, Czech Academy of Sciences, Institute of Thermomechanics, Prague, Seismic waves and earth-
quakes in a global monolithic model, November 1.

104. T. SCHAEFFTER, Physikalisch-Technische Bundesanstalt, Medical Physics and Metrological Information
Technologies, Berlin, Advances in cardiac and quantitative MRI, June 12.

105. M. SCHÄFFNER, Technische Universität Dresden, Institut für Wissenschaftliches Rechnen, Stochastic ho-
mogenization of discrete energies with degenerate growth, May 9.

106. ST. SCHMIDT, Universität Würzburg, Institut für Mathematik, SQP methods for shape optimization based
on weak shape Hessians, October 12.

107. P. SCHRÖDER, Georg-August-Universität Göttingen, Institut für Numerische und Angewandte Mathematik,
Pressure-robust error estimates of exactly divergence-free FEM for time-dependent incompressible flows,
Part II, February 9.

108. J. SCHWIENTEK, Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM, Optimierung, Kaisers-
lautern, Numerical methods for general(ized) semi-infinite optimization – Applied to gemstone cutting,
April 25.

109. D. SILVESTER, University of Manchester, Faculty of Science and Engineering, UK, Accurate time-integration
strategies for modelling incompressible flow bifurcations, April 6.

110. S. SIMONELLA, Technische Universität München, Zentrum Mathematik, Correlations in the mean field dy-
namics: A random walk expansion, November 22.

111. M. SLOWIK, Technische Universität Berlin, Institut für Mathematik, Random conductance model in a de-
generate ergodic environment, May 9.

112. A. SOBOLEVSKIY, Russian Academy of Sciences, Institute for Information Transmission Problems (Kharke-
vich Institute), Moscow, The Hamilton-Jacobi equation: Parallel transport in the 2-Wasserstein space and
beyond, May 9.

113. H. STUKE, Freie Universität Berlin, Institut für Mathematik, Parabolic blow-up in complex time, May 16.

114. T. SULLIVAN, Freie Universität Berlin, Institut für Mathematik, Well-posedness of Bayesian inverse prob-
lems – Stable priors on quasi-Banach spaces, January 17.

115. J. TEN THIJE BOONKKAMP, Eindhoven University of Technology, Department of Mathematics and Computer
Science, Netherlands, Complete flux schemes for conservation laws of advection-diffusion-reaction typ,
March 30.

116. I. THOMPSON, University of Bath, Department of Physics, UK, Modelling device charge dynamics on the
microscopic scale, April 25.

117. R. TOADER, University of Udine, DIMI, Italy, Existence for dynamic Griffith fracture with a weak maximal
dissipation condition, July 12.

118. A. TORCINI, Université de Cergy–Pontoise, Laboratoire de Physique Théorique et Modélisation, France,
Death and rebirth of neural activity in sparse inhibitory networks, February 14.

119. D. TURAEV, Imperial College London, Department of Mathematics, UK, Energy equilibration in slow-fast
systems, April 11.
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120. C. VISONE, Università del Sannio, Dipartimento di Ingegneria, Benevento, Italy, The applicative challenges
of smart materials: From sensing to harvesting, May 30.

121. J. WEED, Massachusetts Institute of Technology, Department of Mathematics, Cambridge, USA, Optimal
rates of estimation for the multi-reference alignment problem, April 26.

122. S. WOLF, Technische Universität Berlin, Institut für Mathematik, Tensor reconstruction, September 19.

123. M.-TH. WOLFRAM, University of Warwick, Mathematics Institute, Coventry, UK, Cross-diffusion systems with
excluded volume effects, June 17.

124. M. YAMAMOTO, University of Tokyo, Graduate School of Mathematical Sciences, Japan, Inverse problems
and optimal control problems for fractional diffusion equations, January 31.

125. , Inverse problems for an integro-hyperbolic equation for the viscoelasticity, April 25.

126. A. ZEGHUZI, Ferdinand-Braun-Institut, Berlin, Simulations of broad area high-power lasers with optical
feedback, June 15.

127. N. ZHIVOTOVSKIY, Skolkovo Institute of Science and Technology, Skoltech Center for Computational Data-
Intensive Science and Engineering (CDISE), Moscow, Russian Federation, Towards minimax optimal rates
in classification and regression, April 25.

128. H. ZIDANI, ENSTA ParisTech, Applied Mathematics Department, Palaiseau, France, Multi-objective control
problems under state constraints, July 26.

129. A. ZUBKOVA, Karl-Franzens-Universität Graz, Institut für Mathematik und Wissenschaftliches Rechnen,
Austria, Homogenization of the generalized Poisson–Nernst–Planck system with nonlinear interface con-
ditions, October 24.
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A.13 Software
AWC –Adaptive Weights Clustering (contact: V. Spokoiny, phone: +49 30/20372-575, e-mail:
vladimir.spokoiny@wias-berlin.de)

AWC is an open source python package containing implementation of the novel non-parametric clustering algo-
rithm Adaptive Weights Clustering. The method is fully automatic and does not require to specify the number of
clusters or their structure. The procedure is numerically feasible and applicable for high-dimensional datasets.

More information: https://www.wias-berlin.de/software/awc/

AWS – Adaptive Weights Smoothing (contact: J. Polzehl, phone: +49 30/20372-481, e-mail:
joerg.polzehl@wias-berlin.de)

AWS is a contributed package within the R-Project for Statistical Computing containing a reference implemen-
tation of the adaptive weights smoothing algorithms for local constant likelihood and local polynomial regres-
sion models. Binaries for several operating systems are available from the Comprehensive R Archive Network
(http://cran.r-project.org).

BALaser (contact: M. Radziunas, phone: +49 30/20372-441, e-mail:
mindaugas.radziunas@wias-berlin.de)

BALaser is the software tool used for simulations of the nonlinear dynamics in high-power edge-emitting
Broad-Area semiconductor Lasers. It integrates numerically the laterally extended dynamic traveling wave
model (one- and two-dimensional partial differential equations), executes different data post-processing rou-
tines, and visualizes the obtained data.

More information: https://www.wias-berlin.de/software/balaser/

BOP (contact: P. Mathé, phone: +49 30/20372-550, e-mail: peter.mathe@wias-berlin.de)

©2009
Bryon Paul McCartney
www.image-engineers.com
all rights reserved

Assembly of an Alstom GT26 gas
turbine at the Mannheim,
Germany, facility

The Block Oriented Process simulator BOP is a software package for large-scale process simulation, which
combines deterministic and stochastic numerical methods. It allows to solve dynamic as well as steady-state
problems and provides capabilities for, e.g., Monte Carlo simulation, correction curve computation, optimiza-
tion, Bayesian parameter calibration, regression analysis, and script-directed simulation scenarios. Due to an
equation-based approach, a wide range of processes as they occur in chemical process industries or other
process engineering environments can be simulated.

The modeling language of BOP is a high-level language that supports a hierarchically unit-oriented description
of the process model and enables a simulation concept that is based on a divide-and-conquer strategy. Exploit-
ing this hierarchical modeling structure, the generated system of coupled differential and algebraic equations
(DAEs) is partitioned into blocks, which can be treated almost concurrently. The numerical methods used are
especially adopted for solving large-scale problems on parallel computers. They include backward differentia-
tion formulae (BDF), block-structured Newton-type methods, and sparse matrix techniques.

BOP is implemented under Unix on parallel computers with shared memory, but can also be run efficiently on
different single processor machines, as well as under Linux or Windows. So far it has been successfully used
for the simulation of several real-life processes in heat-integrated distillation, sewage sludge combustion, or
catalytic CO oxidation in automotive oxygen sensors, for example. Currently, it is commercially used for the
simulation of heavy-duty gas turbines. Here, BOP covers a broad range of simulation tasks, from performance
validation and optimization to the development of new process models.

Detailed information: https://www.wias-berlin.de/software/BOP/
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ClusCorr98 (contact: H.-J. Mucha, phone: +49 30/20372-573, e-mail:
hans-joachim.mucha@wias-berlin.de)

The statistical softwareClusCorr98 performs exploratory data analysis with the focus on cluster analysis,
classification, and multivariate visualization. A highlight is the pairwise data clustering for finding groups in
data. Another highlight is the automatic validation technique of cluster analysis results performed by a general
built-in validation tool based on resampling techniques. It can be considered as a three-level assessment of
stability. The first and most general level is decision-making regarding the appropriate number of clusters.
The decision is based on well-known measures of correspondence between partitions. Second, the stability of
each individual cluster is assessed based on measures of similarity between sets. It makes sense to investigate
the (often quite different) specific stability of clusters. In the third and most detailed level of validation, the
reliability of the cluster membership of each individual observation can be assessed.

ClusCorr98 runs in the host application Excel 2013.

Further information: https://www.wias-berlin.de/software/ClusCorr/

ddfermi (contacts: Th. Koprucki, phone: +49 30/20372-508, e-mail: thomas.koprucki@wias-berlin.de,
J. Fuhrmann, phone: +49 30/20372-560, e-mail: juergen.fuhrmann@wias-berlin.de, )

ddfermi is an open-source software prototype which simulates the carrier transport in classical or organic
semiconductors devices based on drift-diffusion models.

The key features are

– finite volume discretization of the semiconductor equations (van Roosbroeck system),
– thermodynamically consistent Scharfetter–Gummel flux discretizations beyond Boltzmann,
– general statistics: Fermi–Dirac, Gauss–Fermi, Blakemore and Boltzmann,
– generic carrier species concept,
– one-, two- and three-dimensional devices,
– C++-code based on pdelib and interfaced via Python,
– in-situ visualization.

Please find further information under https://www.wias-berlin.de/software/ddfermi/.

DiPoG (contact: A. Rathsfeld, phone: +49 30/20372-457, e-mail: andreas.rathsfeld@wias-berlin.de)

The program package DiPoG (Direct and inverse Problems for optical Gratings) provides simulation and opti-
mization tools for periodic diffractive structures with multilayer stacks.

The direct solver computes the field distributions and efficiencies of given gratings for TE and TM polariza-
tion as well as, under conical mounting, for arbitrary polygonal surface profiles. The inverse solver deals with
the optimal design of gratings, realizing given optical functions, for example, far-field patterns, efficiency, or
phase profiles. The algorithms are based on coupled generalized finite/boundary elements and gradient-type
optimization methods.

For detailed information please see https://www.wias-berlin.de/software/DIPOG/.

LDSL-tool (contact: M. Radziunas, phone: +49 30/20372-441, e-mail:
mindaugas.radziunas@wias-berlin.de)

LDSL-tool (Longitudinal Dynamics in Semiconductor Lasers) is a tool for the simulation and analysis of
the nonlinear longitudinal dynamics in multisection semiconductor lasers and different coupled laser devices.
This software is used to investigate and design laser devices that exhibit various nonlinear effects such as
self-pulsations, chaos, hysteresis, mode switching, excitability, mutual synchronization, and frequency entrain-
ment by an external modulated optical or electrical signal.
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LDSL-tool combines models of different complexity, ranging from partial differential equation (PDE) to or-
dinary differential equation (ODE) systems. A mode analysis of the PDE system, a comparison of the different
models, and a numerical bifurcation analysis of PDE systems are also possible.

Detailed information: https://www.wias-berlin.de/software/ldsl

WIAS-MeFreSim (contact: T. Petzold, phone: +49 30/20372-498, e-mail: thomas.petzold@wias-berlin.de)

WIAS-MeFreSim allows for the three-dimensional simulation of induction heat treatment for workpieces
made of steel using single- and multi-frequency currents. It is the aim of the heat treatment to produce work-
pieces with hard, wear resistant surface and soft, ductile core. The boundary layer of the workpiece is heated
up by induced eddy currents and rapidly cooled down by the subsequent quenching process. The resulting
solid-solid phase transitions lead to a hardening of the surface of the workpiece.

WIAS-MeFreSim is based on the WIAS software pdelib. It solves coupled systems of PDEs consisting of Max-
well’s equations, the heat equation and the equations of linear elasticity.

Fore more information see https://www.wias-berlin.de/software/MeFreSim/.

Par Moon (contact: U. Wilbrandt, phone: +49 30/20372-571, e-mail: ulrich.wilbrandt@wias-berlin.de)

ParMooN is a flexible finite element package for the solution of steady-state and time-dependent convection-
diffusion-reaction equations, incompressible Navier–Stokes equations, and coupled systems consisting of
these types of equations, like population balance systems or systems coupling free flows and flows in porous
media.

Please find more information under http://cmg.cds.iisc.ac.in/parmoon/.

Important features of ParMooN are

– the availability of more than 100 finite elements in one, two, and three space dimensions (conforming,
non-conforming, discontinuous, higher-order, vector-valued, isoparametric, with bubbles)

– the use of implicit time-stepping schemes ( θ -schemes, DIRK schemes, Rosenbrock–Wanner schemes)
– the application of a multiple-discretization multi-level (MDML) preconditioner in Krylov subspace methods
– tools for using reduced-order models based on proper orthogonal decomposition (POD) are available
– hybrid parallelization with MPI and OpenMP

ParMooN is a joint development with the group of Prof. S. Ganesan (IISc Bangalore) and the group of Prof.
Matthies (TU Dresden).

pdelib (contact: J. Fuhrmann, phone: +49 30/20372-560, e-mail: juergen.fuhrmann@wias-berlin.de)

Concentration isosurfaces in a
thin-layer flow cell (pdelib)

pdelib is a collection of software components that are useful to create simulators and visualization tools
for partial differential equations. The main idea of the package is modularity, based on a bottom-up design
realized in the C++ programming language. Among others, it provides

– iterative solvers for linear and nonlinear systems of equations
– sparse matrix structures with preconditioners and direct solver interfaces
– dimension-independent simplex grid handling in one, two, and three space dimensions
– finite volume-based solution of coupled parabolic reaction-diffusion-convection systems and pressure ro-

bust discretizations for Navier–Stokes
– finite element based solution of variational equations (especially thermoelasticity) with goal-oriented error

estimators
– optimization tool box
– parallelization on SMP architectures
– graphical output during computation using OpenGL
– scripting interface based on the languages Python and Lua

Annual Research Report 2017

https://www.wias-berlin.de/software/ldsl
https://www.wias-berlin.de/~petzold?lang=1
https://www.wias-berlin.de/software/MeFreSim/
https://www.wias-berlin.de/~wilbrandt?lang=1
http://cmg.cds.iisc.ac.in/parmoon/
https://www.wias-berlin.de/~fuhrmann?lang=1


186 A Facts and Figures

– graphical user interface based on the FLTK toolkit
– modular build system and package manager for the installation of third-party software used in the code

Please see also https://www.wias-berlin.de/software/pdelib/.

TetGen (contact: H. Si, phone: +49 30/20372-446, e-mail: hang.si@wias-berlin.de)

Adapted tetrahedral meshes
and anisotropic meshes for
numerical methods and
scientific computation

TetGen is a mesh generator for three-dimensional simplex meshes as they are used in finite volume and fi-
nite element computations. It generates the Delaunay tetrahedralization, Voronoi diagram, and convex hull for
three-dimensional point sets. For three-dimensional domains with piecewise linear boundary, it constructs
constrained Delaunay tetrahedralizations and quality tetrahedral meshes. Furthermore, it is able to create
boundary-conforming Delaunay meshes in a number of cases including all polygonal domains with input an-
gles larger than 70°.

More information is available at https://www.wias-berlin.de/software/tetgen/.

WIAS-TeSCA (contact: H. Stephan, phone: +49 30/20372-442, e-mail: holger.stephan@wias-berlin.de)

WIAS-TeSCA is a Two-dimensional Semi-Conductor Analysis package. It serves to simulate numerically the
charge carrier transport in semiconductor devices based upon the drift-diffusion model. This van Roosbroeck
system is augmented by a vast variety of additional physical phenomena playing a role in the operation of
specialized semiconductor devices as, e. g., the influence of magnetic fields, optical radiation, temperature, or
the kinetics of deep (trapped) impurities.

The strategy ofWIAS-TeSCA for solving the resulting highly nonlinear system of partial differential equations
is oriented towards the Lyapunov structure of the system describing the currents of electrons and holes within
the device. Thus, efficient numerical procedures for both the stationary and the transient simulation have been
implemented, the spatial structure of which is a finite volume method. The underlying finite element discretiza-
tion allows the simulation of arbitrarily shaped two-dimensional device structures.

WIAS-TeSCA has been successfully used in the research and development of semiconductor devices such
as transistors, diodes, sensors, detectors, lasers, and solar cells.

The semiconductor device simulation package WIAS-TeSCA operates in a Linux environment on desktop
computers.

WIAS is currently focusing on the development of a new generation semiconductor simulator prototype. There-
fore, WIAS-TeSCA is in maintenance mode and is used for benchmarking of the new code and the support of
running projects.

For more information please see https://www.wias-berlin.de/software/tesca/.

WIAS Software Collection for Imaging (contact: K. Tabelow, phone: +49 30/20372-564, e-mail:
karsten.tabelow@wias-berlin.de)

adimpro is a contributed package within the R-Project for Statistical Computing that contains tools for image
processing, including structural adaptive smoothing of digital color images. The package is available from the
Comprehensive R Archive Network (http://cran.r-project.org).

The AWS for AMIRA (TM) plugin implements a structural adaptive smoothing procedure for two- and three-
dimensional images in the visualization software AMIRA (TM). It is available in the Zuse Institute Berlin’s ver-
sion of the software for research purposes (http://amira.zib.de/).
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WIAS Software Collection for Neuroscience (contact: K. Tabelow, phone: +49 30/20372-564, e-mail:
karsten.tabelow@wias-berlin.de)

dti is a contributed package within the R-Project for Statistical Computing. The package contains tools for
the analysis of diffusion-weighted magnetic resonance imaging data (dMRI). It can be used to read dMRI data,
to estimate the diffusion tensor, for the adaptive smoothing of dMRI data, the estimation of the orientation
density function or its square root, the estimation of tensor mixture models, the estimation of the diffusion
kurtosis model, fiber tracking, and for the two- and three-dimensional visualization of the results. The package
is available from the Comprehensive R Archive Network (http://cran.r-project.org). The multi-shell position-
orientation adaptive smoothing (msPOAS) method for dMRI data is additionally available within the ACID tool-
box for SPM (http://www.diffusiontools.com).

fmri is a contributed package within the R-Project for Statistical Computing that contains tools to analyze
fMRI data with structure adaptive smoothing procedures. The package is available from the Comprehensive R
Archive Network (http://cran.r-project.org).
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